Что такое исполнительный механизм

Что такое исполнительный механизм

Исполнительный механизм — это устройство, преобразующее выходной сигнал регулятора в перемещение регулирующего органа. Исполнительные механизмы крайней распространены и используются повсеместно не только в промышленности, но и в быту.

Исполнительный механизм

Общий принцип действия исполнительных механизмов

Обычно исполнительные механизмы состоят из трех основных частей: привод, прибор для управления приводом и регулирующий орган — задвижки. Привод обеспечивает изменение положения задвижки, а задвижка корректирует величину переменной процесса.

За счет подвода энергии извне исполнительный механизм развивает усилие и мощность, достаточные для перемещения регулирующего органа в положение, соответствующее командному сигналу. Например, исполнительный механизм может использоваться, чтобы изменить степень открытия клапана для увеличения или уменьшения загрузки, или изменить положение заслонки или жалюзи.

Виды исполнительных механизмов

Существуют разные виды исполнительных механизмов, которые, в свою очередь, имеют подвиды. Их конструкция и принцип действия отличаются друг от друга. В зависимости от вида энергии, используемой для создания перестановочного усилия, исполнительные механизмы разделяют на пневматические, гидравлические и электрические.

Тип исполнительного механизма, который используется на конкретном производстве, зависит от многих факторов, включая особенности технологического процесса, действие, которое должно быть выполнено и требуемую скорость реагирования.

Статическое и астатическое регулирование.

Статическое и астатическое регулирование. Если на управляемый процесс действует возмущение (дестабилизирующий фактор) f, то значение имеет статическая характеристика системы в форме y = F(f) при y = const. Возможны два характерных вида этих характеристик. В соответствии с тем, какая из двух характеристик свойственна данной системе, различают статическое и астатическое регулирование.

Рассмотрим систему регулирования уровня воды в баке. Возмущающим фактором системы является поток Q воды из бака. Пусть при Q = 0 имеем y = y, сигнал рассогласования по заданному уровню воды = 0. Звено управления Р системы (регулятор) настраивается так, чтобы вода при этом в бак не поступала. При Q ≠ 0, уровень воды понижается ( ≠ 0), поплавок опускается и открывает заслонку, в бак начинает поступать вода. Новое состояние равновесия достигается при равенстве входящего и выходящего потоков воды. Следовательно, при Q ≠ 0 заслонка должна быть обязательно открыта, что возможно только при каком-то новом уровне воды y1, при котором = К (y-y1) ≠ 0. Причем, чем больше Q, тем при больших значениях устанавливается новое равновесное состояние. Статическая характеристика системы имеет характерный наклон (рис б).

Понятие исполнительного устройства (механизма).

Исполнительное устройство — устройство системы автоматического управления или регулирования, воздействующее на процесс в соответствии с получаемой командной информацией. Состоит из двух функциональных блоков: исполнительного механизма и регулирующего органа и может оснащаться дополнительными блоками.

Нормально открытое исполнительное устройство — исполнительное устройство, в котором при прекращении подвода энергии, создающей перестановочное усилие, проход открывается.

Читайте также:  Котельное оборудование для котельной

Нормально закрытое исполнительное устройство — исполнительное устройство, в котором при прекращении подвода энергии, создающей перестановочное усилие, проход закрывается.

Исполнительный механизм — механизм, являющийся функциональным блоком, предназначенным для управления исполнительным органом в соответствии с командной информацией. В системах автоматического регулирования сред исполнительный механизм предназначен для перемещения затвора регулирующего органа.

Регулирующий орган — исполнительный орган, воздействующий на процесс путем снижения пропускной способности.

Запорно-регулирующий орган — регулирующий орган, который обеспечивает гермети- гское закрытие прохода.

Дополнительный блок — блок, предназначенный для расширения области применения дополнительного устройства в различных схемах управления.

3. Практическая задача: Рассчитать основные характеристики инерционного интегрирующего звена, такие как: передаточная функция, комплексная частотная характеристика (КЧХ), амплитудно-частотная характеристика (АЧХ) и фазо-частотная характеристика (ФЧХ). Привести примеры данного типа элементарного динамического звена.

Инерционное интегрирующее звено также называют реальное интегрирующее звено

Реальное интегрирующее звено представляет собой последовательное соединение идеального интегрирующего звена и апериодического.

Примером может служить электродвигатель постоянного тока, в котором управляемая величина – поворот вала двигателя.

| следующая лекция ==>
СТЫКОВАЯ СВАРКА ЦВЕТНЫХ МЕТАЛЛОВ И СПЛАВОВ | Виды обеспечения АСУТП

Дата добавления: 2016-05-11 ; просмотров: 1438 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Электрическим исполнительным механизмом в системах управления обычно называют устройство, предназначенное для перемещения рабочего органа в соответствии с сигналами, поступающими от управляющего устройства.

Рабочими органами могут быть различного рода дроссельные заслонки, клапаны, задвижки, шиберы, направляющие аппараты и другие регулирующие и запорные органы, способные производить изменение количества энергии или рабочего вещества, поступающего в объект управления. При этом перемещение рабочих органов может быть как поступательным, так и вращательным в пределах одного или нескольких оборотов. Следовательно, исполнительный механизм с помощью рабочего органа осуществляет непосредственное воздействие на управляемый объект .

Исполнительные механизмы — это устройства, механически воздействующие на физические процессы путем преобразования электрических сигналов в требуемое управляющее воздействие. Аналогично датчикам, исполнительные механизмы должны быть подобраны соответствующим образом для каждой задачи. Исполнительные механизмы могут быть бинарными, дискретными или аналоговыми. Конкретный тип для каждой задачи выбирается с учетом необходимой выходной мощности и быстродействия.

В общем случае электрический исполнительный механизм состоит из электропривода, редуктора, узла обратной связи, датчика указателя положения выходного элемента и конечных выключателей.

В качестве электропривода в исполнительных механизмах используются либо электромагниты, либо электродвигатели с понижающим редуктором для снижения скорости перемещения выходного элемента до величины, обеспечивающей возможность непосредственного соединения этого элемента (вала или штока) с рабочим органом.

Читайте также:  Полуторный размер это сколько

Узлы обратной связи предназначены для введения в контур регулирования воздействия, пропорционального величине перемещения выходного элемента исполнительного механизма, а следовательно, и сочлененного с ним рабочего органа. С помощью конечных выключателей производится отключение электропривода исполнительного механизма при достижении рабочим органом своих конечных положений во избежание возможных повреждений механических звеньев, а также для ограничения перемещения рабочего органа.

Как правило, мощность сигнала, вырабатываемого регулирующим устройством, бывает недостаточной для непосредственного перемещения рабочего органа, поэтому исполнительный механизм можно рассматривать как усилитель мощности, в котором слабый входной сигнал, усиливаясь во много раз, передается на рабочий орган.

Все электрические исполнительные механизмы, нашедшие широкое применение в самых различных отраслях современной техники автоматизации производственных процессов, можно разделить на две основные группы:

К первой группе относятся прежде всего соленоидные электроприводы , предназначенные для управления различного рода регулирующими и запорными клапанами, вентилями, золотниками и т. п. Сюда же можно отнести исполнительные механизмы с различными видами электромагнитных муфт . Характерная особенность электрических исполнительных механизмов этой группы состоит в том, что необходимое для перестановки рабочего органа усилие создается за счет электромагнита, являющегося неотъемлемой частью исполнительного механизма.

Для целей регулирования соленоидные механизмы обычно применяются только в системах двухпозиционного регулирования. В системах автоматического управления в качестве исполнительных элементов часто используются электромагнитные муфты, которые подразделяются на муфты трения и муфты скольжения.

Ко второй, наиболее распространенной в настоящее время группе относятся э лектрические исполнительные механизмы с электродвигателями различных типов и конструкций.

Существуют, хотя и не получили широкого распространения, исполнительные механизмы с неуправляемыми двигателями, которые содержат управляемую электрическим сигналом механическую, электрическую либо гидравлическую муфту. Характерной их особенностью является то, что двигатель в них работает непрерывно все время работы системы регулирования, а сигнал управления от регулирующего прибора передается рабочему органу через управляемую муфту

Исполнительные механизмы с управляемыми двигателями в свою очередь можно разделить по способу построения системы управления на механизмы с контактным и бесконтактным управлением.

Включение, отключение и реверсирование электродвигателей исполнительных механизмов с контактным управлением производится с помощью различной релейной или контактной аппаратуры. Это определяет основную отличительную особенность исполнительных механизмов с контактным управлением: у таких механизмов скорость выходного органа не зависит от величины управляющего сигнала, подаваемого на вход исполнительного устройства, а направление перемещения определяется знаком (или фазой) этого сигнала. Поэтому исполнительные механизмы с контактным управлением относят обычно к исполнительным устройствам с постоянной скоростью перемещения рабочего органа.

Для получения средней переменной скорости перемещения выходного органа исполнительного механизма при контактном управлении широко используется импульсный режим работы его электродвигателя.

Читайте также:  Бордюр для цветника своими руками фото

В большинстве исполнительных механизмов, предназначенных для работы в схемах с контактным управлением, используются реверсивные электродвигатели. Применение электродвигателей вращающихся только в одну сторону, весьма ограничено, но все же имеет место.

Бесконтактные электрические исполнительные механизмы отличаются повышенной надежностью и позволяющие относительно просто получать как постоянную, так и переменную скорость перемещения выходного органа. Для бесконтактного управления исполнительными механизмами используются электронные, магнитные или полупроводниковые усилители, а также их сочетание. При работе управляющих усилителей в релейном режиме скорость перемещения выходного органа исполнительных механизмов постоянна.

Как электрические исполнительные механизмы с контактным управлением, так и бесконтактные можно подразделять также по следующим признакам.

По назначению: с вращательным движением выходного вала — одиооборотные; с вращательным движением выходного вала — многооборотпые; с поступательным движением выходного вала — прямоходпые.

По характеру действия: позиционного действия; пропорционального действия.

По исполнению: в нормальном исполнении, в специальном исполнении (пылеводозащищенном, взрывозащищениом, тропическом, морском и т. п.).

Выходной вал однооборотных исполнительных механизмов может вращаться в пределах одного полного оборота. Такие механизмы характеризуются величиной крутящего момента на выходном валу и временем его полного оборота.

В отличие от однооборотных многооборотные механизмы, выходной вал которых может осуществлять перемещение в пределах нескольких, иногда значительного количества, оборотов, характеризуются также полным числом оборотов выходного вала.

Прямоходные механизмы имеют поступательное движение выходного штока и оцениваются усилием на штоке, величиной полного хода штока, временем его перемещения на участке полного хода и по скорости движения выходного органа в оборотах в минуту для однооборотных и многооборотных и в миллиметрах в секунду для прямоходных механизмов.

Конструкция исполнительных механизмов позиционного действия такова, что с их помощью рабочие органы можно устанавливать только в определенные фиксированные положения. Чаще всего таких положений бывает два: «открыто» и «закрыто». В общем случае возможно существование и многопозиционных механизмов. Исполнительные механизмы позиционного действия обычно не имеют устройств для получения сигнала обратной связи по положению выходного органа.

Исполнительные механизмы пропорционального действия конструктивно таковы, что обеспечивают в заданных пределах установку рабочего органа в любое промежуточное положение в зависимости от величины и длительности управляющего сигнала. Подобные исполнительные механизмы могут использоваться как в позиционных, так и в П, ПИ и ПИД-системах автоматического регулирования.

Существование электрических исполнительных механизмов как нормального, так и специальных исполнений в значительной мере расширяет возможные области их практического применения.

Ссылка на основную публикацию
Adblock detector