Прямоходовый и обратноходовый преобразователь разница

Прямоходовый и обратноходовый преобразователь разница

По сравнению с классическими трансформаторными источ­никами, инверторные сварочные источники имеют меньшую массу и объем, а также обладают превосходными нагрузочными характеристиками. Постоянное удешевление силовой элемент­ной базы привело к тому, что в настоящее время инверторные источники стали дешевле и практически начали вытеснять с рынка сварочных источников источники, построенные по клас­сической схеме с использованием сварочного трансформатора, работающего на частоте питающей сети.

Но с увеличением доли инверторного сварочного оборудо­вания обострилась проблема его ремонта. Ситуация усугубля­ется тем, что зачастую производители не комплектует свои из­делия подробными принципиальными схемами и методиками ремонта.

В данном разделе мы рассмотрим подробные описания, принципи­альные электрические схемы и инструкции по ремонту и про­верке инверторных сварочных источников, ознакомимся с достоинствами и работой инверторных сва­рочных источников, основами схемотехники инверторов.

Существует большое конструктивное разноо­бразие среди инверторных сварочных источ­ников. Но при ремонте к ним можно применить определенный подход, который 80% случаев обеспечит обнаружение и устранение неисправ­ности даже при отсутствии какой-то техниче­ской документации.

1.1. Влияние рабочей частоты на габариты трансформатора

Трансформатор является необходимым элементом любого сварочного источника:

он понижает напряжение сети до уровня напряжения дуги;

Осуществляет гальваническую развязку сети и сварочной цепи.

Известно, что размеры трансформатора определяются его рабочей частотой, а также качеством магнитного материала сердечника. При понижении частоты габариты трансформатора возрастают, а при повышении уменьшаются.

Ранее уже были рассмотрены сварочные источники с транс­форматорами, работающими на относительно низкой частоте сети. Поэтому масса и объем этих источников в основном определялся массой и объемом сварочного трансформатора.

В последнее время были разработаны различные высоко­качественные магнитные материалы, позволяющие несколько улучшить массогабаритные параметры трансформаторов и сварочных источников. Однако существенного улучшение этих параметров можно добиться только за счет увеличения рабочей частоты трансформаторов.

Так как частота сетевого напряжения является стандар­том и не может быть изменена, то повысить рабочую частоту трансформатора можно только используя специальный элек­тронный преобразователь.

Упрощенная блок-схема инверторного сварочного источ­ника изображена на рис. 1.1. Согласно этой схеме, сетевое на­пряжение выпрямляется и сглаживается, а затем подается на электронный преобразователь. Он преобразует постоянное напряжение в переменное высокой частоты. Переменное на­пряжение высокой частоты трансформируется при помощи малогабаритного высокочастотного трансформатора, затем выпрямляется и подается в сварочную цепь.

Рис.1.1 Упрощенная блок-схема инверторного сварочного источника

Работа электронного преобразователя тесно связана с ци­клами перемагничивания трансформатора. Так как ферро­магнитный материал сердечника трансформатора обладает нелинейностью и насыщается, то индукция в сердечнике трансформатора может расти лишь до какого-то максималь­ного значения Вm,

После достижения этого значения сердечник необходимо размагнитить до нуля или перемагнитить в обратном направ­лении до значения -Вm. Энергия может передаваться через трансформатор в цикле намагничивания, в цикле перемагни­чивания или в обоих циклах.

Преобразователи, обеспечивающие передачу энергии в одном цикле перемагничивания трансформатора, назы­ваются однотактными.

Преобразователи, обеспечивающие передачу энергии в обоих циклах перемагничивания трансформатора, называются двухтактными.

1.2 Однотактные прямоходовые и обрат­ноходовые преобразователи

Однотактные преобразователи получили наибольшее рас­пространение в дешевых и маломощных инверторных свароч­ных источниках, рассчитанных на работу от однофазной сети. В условиях резко переменной нагрузки, каковой является сварочная дуга, однотактные преобразователи выгодно отли­чаются от различных двухтактных преобразователей тем, что не требует симметрирования и не подвержены такой болезни, как сквозные токи.

Следовательно, для управления этим преобразователем, требуется более простая схема управления, по сравнению с той, которая потребуется для двухтактного преобразователя.

По способу передачи энергии в нагрузку однотактные пре­образователи делятся на две группы: прямоходовые и обрат­ноходовые (рис. 1.2).

В прямоходовых преобразователях энергия в нагрузку пе­редается в момент замкнутого состояния, а в обратноходовых преобразователях — в момент разомкнутого состояния клю­чевого транзистора VT.

При этом в обратноходовом преобразователе энергия запа­сается в индуктивности трансформатора Т во время замкну­того состояния ключа, и ток ключа имеет форму треугольника с нарастающим фронтом и крутым срезом.

При выборе типа преобразователя ИСИ между прямо­ходовым и обратноходовым, предпочтение следует отдавать прямоходовому однотактному преобразо­вателю.

Рис. 1.2. Типы однотактного преобразователя и соответствующие им формы тока ключа: а—обратноходовой преобразователь; б—прямоходовой преобразователь

Не смотря на его большую сложность, прямоходовой преобразователь, в отличие от обратноходо­вого, имеет большую удельную мощность. Это объясняется тем, что в обратноходовом преобразователе через ключевой транзистор протекает ток треугольной формы, а в прямоходо­вом — прямоугольной.

Следовательно, при одном и том же максимальном токе ключа среднее значение тока у прямоходового преобразова­теля получается в два раза выше. Основными достоинствами обратноходового преобразователя является:

— отсутствие дросселя в выпрямителе;

— возможность групповой стабилизации нескольких на­пряжений.

Эти достоинства обеспечивают преимущество обратнохо­довым преобразователям в различных маломощных примене­ниях, каковыми являются:

— источники питания различной бытовой теле- и радиоап­паратуры;

— служебные источники питания цепей управления самих сварочных источников.

Трансформатор однотранзисторного прямоходового преоб­разователя (ОПП) на рис.1.2, б, имеет специ­альную размагничивающую обмотку III, Эта обмотка служит для размагничивания сердечника трансформатора Т, который намаг­ничивается во время замкнутого состояния транзистора VT.

В это время напряжение на обмотке III прикладывается к диоду VD3 в запирающей полярности. Благодаря этому раз­магничивающая обмотка не оказывает никакого влияния на процесс намагничивания. После закрытия транзистора VT напряжение на обмотке III Меняет свою полярность. При этом диод VD3 отпирается, и энергия, накопленная в трансформаторе Т, возвращается в первичный источник питания Uп. Однако на практике, из-за недостаточной связи между обмотками трансформатора, часть энергии намагничивания не возвращается в первичный источник. Эта энергия обычно рассеивается в транзисторе VT и демпфирующих цепочках, ухудшая общую эффективность и надежность преобразователя.

Введение

Битлз или Роулинг Стоунз? Майкл Джордан или Леброн Джеймс? Бифштекс глубокой или средней прожарки? Прямоходовой или обратноходовой преобразователь? Это лишь некоторые из вечных вопросов, по которым люди спорят на протяжении многих лет, энергично отстаивают свое мнение и не находят единственно верного ответа. Но, по правде говоря, в каждом из этих примеров оба варианта ответа имеют свои преимущества, а потому, правильным ответом может быть и тот и другой.

В этой статье мы сосредоточимся на прямоходовых и обратноходовых преобразователях. Мы обсудим характеристики прямоходовой топологий с активным ограничением и обратноходовой схемы, работающей в режиме непрерывных токов (continuous conduction mode), продемонстрируем преимущества и недостатки каждой из них на примере двух источников питания. В частности, мы рассмотрим PoE-источники питания (Power over Ethernet) мощностью 51 Вт, которые соответствуют стандарту IEEE 802.3bt и предназначены для телекоммуникационных приложений.

В новом стандарте максимальная мощность была увеличена до 71 Вт, благодаря чему прямоходовая топология стала более привлекательной, чем она была ранее, когда максимальная мощность составляла 25,5 Вт. В то же время появляются новые типоразмеры и технологии сердечников трансформаторов, что приводит к увеличению мощности и эффективности обратноходовых преобразователей. В результате этих улучшений, а также благодаря развитию силовых полупроводниковых ключей, требуется по-новому взглянуть на вопрос: какой же преобразователь лучше: прямоходовой или обратноходовой?

Анализ принципов работы и особенностей прямоходовых и обратноходовых преобразователей выходит за рамки данной статьи. Тем не менее, выполняемый в статье краткий обзор каждой топологии, помогает выделить сходства и различия, а также сильные и слабые стороны обоих типов преобразователей.

Прямоходовой преобразователь с активным ограничением

Типовая схема прямоходового преобразователя с активным ограничением показана на рисунке 1. Для простоты на схеме представлены только силовые ключи, трансформатор, выходной фильтр и контроллер. Вспомогательные компоненты, например, относящиеся к обвязке контроллера, не показаны для большей наглядности.

Рис. 1. Прямоходовой преобразователь с активным ограничением

Контроллер управляет двумя силовыми МОП-транзисторами QPRI и QCLAMP, расположенными на первичной стороне. Ключи коммутируются поочередно с высокой частотой (100 кГц). Когда один силовой транзистор включен, другой должен быть выключен. Отношение части периода, в течение которого QPRI включен (QCLAMP выключен), к полному периоду коммутации называется рабочим циклом или коэффициентом заполнения D. Рабочий цикл определяет плотность следования импульсов напряжения в первичной обмотке трансформатора VPRI. Благодаря магнитной связи между обмотками эти импульсы передаются на вторичную сторону преобразователя. Напряжение на вторичной обмотке VSEC масштабируется в соответствии с коэффициентом трансформации (N), определяемым соотношением числа витков в обмотках.

Читайте также:  Пластиковые уголки под плитку в ванной

Напряжение на вторичной стороне выпрямляется с помощью синхронного выпрямителя, состоящего из силовых МОП-транзисторов QFWD и QFREE. Выпрямленное напряжение поступает на выходной фильтр, образованный индуктивностью LOUT и конденсатором COUT. Этот низкочастотный LC-фильтр необходим для преобразования последовательности импульсов в постоянное напряжение на выходе источника питания. Выходное напряжение оказывается пропорциональным величине рабочего цикла D и коэффициенту трансформации N. Импульсы напряжения на вторичной обмотке (VSEC) также часто используются для управления силовыми МОП-транзисторами, которые выполняют функцию выпрямительных диодов. Такая схема называется схемой синхронного выпрямления (Synchronous Rectifcation , SR). Она обеспечивает более высокую эффективность, по сравнению с обычными диодами.

Обратноходовая топология

Типовая схема обратноходового преобразователя показана на рис. 2. Контроллер управляет силовым МОП-транзистором, расположенным на первичной стороне (QPRI), и МОП-транзистором синхронного выпрямителя на вторичной стороне (QSYNC). Включение транзисторов происходит поочередно. Как и в случае с прямоходовым преобразователем, силовой ключ QPRI коммутируется с высокой частотой и изменяемым рабочим циклом D. Напряжение на первичной обмотке трансформатора VPRI передается на вторичную сторону VSEC. В отличие от рассмотренной ранее прямоходовой схемы, накопление энергии происходит непосредственно в трансформаторе в интервалах, когда включен транзистор QPRI. Затем, когда QPRI выключается, включается QSYNC, и накопленная энергия передается в нагрузку.

Рис. 2. Обратноходовой преобразователь с синхронным выпрямлением

Таким образом, транзистор QSYNC отвечает за выпрямление переменного импульсного напряжения на вторичной обмотке. Для включения и выключения QSYNC необходим сигнал управления, формируемый контроллером, который расположен на первичной стороне. Для гальванической развязки этого сигнала используется дополнительный маломощный трансформатор.

Схема фильтрации в обратноходовой топологии также отличается от схемы, применяемой в прямоходовых преобразователях. В качестве индуктивности выходного LC-фильтра выступает вторичная обмотка трансформатора. Результирующее постоянное напряжение VOUT1 на выходе источника питания оказывается пропорциональным значению D и коэффициенту трансформации N. В дополнение к основному LC-фильтру, образованному вторичной обмоткой и конденсатором COUT1, часто используют опциональный LC-фильтр, содержащий индуктивность LOUT2 и емкость COUT2. Этот низкочастотный фильтр еще больше ослабляет уровень пульсаций напряжения VOUT2 на выходе источника питания.

Сравнение преобразователей

Сравнение количества компонентов и качества выходной фильтрации

Пожалуй, проще всего сравнивать прямоходовую и обратноходовую топологии по числу используемых компонентов. Этот пункт достаточно важен, особенно с учетом влияния, которое он оказывает на габариты и стоимость источника питания. На рис. 3 показана упрощенная схема традиционного обратноходового преобразователя. Транзистор QSYNC, используемый в схеме на рис. 2, был заменен обычным диодом. Дополнительный фильтр LC-фильтр был исключен.

Рис. 3. Упрощенная схема традиционного обратноходового преобразователя (с выпрямительными диодами)

Аналогичным образом можем получить упрощенную схему традиционного прямоходового преобразователя, в котором транзисторы синхронного выпрямителя также заменены на диоды (рис. 4). Как видно из таблицы 1, обратноходовой преобразователь является очевидным победителем по количеству используемых компонентов. По этой причине общепринятым является мнение, согласно которому обратноходовой преобразователь всегда проще и дешевле.

Рис. 4. Упрощенная схема традиционного прямоходового преобразователя (с выпрямительными диодами)

Таблица 1. Перечень компонентов, используемых в прямоходовом и обратноходовом преобразователях (в порядке уменьшения стоимости)

Компоненты в порядке уменьшения стоимости

Прямоходовой

Обратноходовой

Традиционный

Современный

Традиционный

Современный

Тем не менее, современные прямоходовые и обратноходовые источники питания для телекоммуникационных приложений часто используют схемы синхронного выпрямления, как это показано на рисунках 1 и 2, а также двухступенчатый выходной фильтр в обратноходовых преобразователях. В результате, как видно из Таблицы 1, это сокращает разрыв по количеству компонентов и сложности реализации между двумя топологиями, что делает спорным утверждение о том, что обратноходовой преобразователь всегда проще и дешевле.

Практически повсеместное использование синхронного выпрямления обусловлено несколькими основными факторами:

  • постоянным снижением стоимости силовых МОП-транзисторов и контроллеров, поддерживающих функцию синхронного выпрямления;
  • уменьшением выходного напряжения и повышением выходной мощности современных источников питания.

Очевидно, что попытка использовать обычный диодный выпрямитель в преобразователях с выходным напряжением 3,3 В и током 20 А вряд ли окажется успешной. Выпрямление тока 20 А, даже с диодом Шоттки, приведет к потере приблизительно 10 Вт мощности, если прямое падение напряжения на диоде составляет 0,5 В. Выделяемое на диодах тепло будет чрезвычайно сложно отвести, не говоря уже о снижении эффективности источника питания. Это сильно контрастирует с показателями синхронного выпрямителя на МОП-транзисторах, который может без проблем иметь сопротивление около 2,5 мОм. В таком случае полевой транзистор рассеивает всего лишь около (20 А) 2 х 2,5 мОм = 1 Вт. Отвести от силового ключа мощность 1 Вт, выделяемую в виде тепла, уже намного проще. Как правило, для охлаждения диода придется использовать большой и дорогой радиатор, в то время как для охлаждения МОП-транзистора будет достаточно теплоотвода, обеспечиваемого печатной платой определенного размера.

В прямоходовых преобразователях для управления МОП-транзисторами синхронного выпрямителя в простейшем случае можно подключить выводы вторичной обмотки к затворам транзисторов, как это показано на рис/ 1. Этот метод часто называется синхронным выпрямлением с самостоятельным управлением (Self-Driven Synchronous Rectifcation, SDSR). Если напряжение на вторичной обмотке оказывается слишком высоким, то может потребоваться дополнительная схема сдвига уровней или схема ограничения, которые призваны не допустить превышения максимального напряжения на затворах МОП-транзисторов. Поскольку эти схемы относительно просты и используют недорогие компоненты, то они не учитываются в таблице 1.

В отличие от прямоходовых преобразователей, обратноходовые преобразователи по каким-то эзотерическим причинам плохо работают со схемой синхронного выпрямления с самостоятельным управлением SDSR. В результате, как уже было сказано выше, для управления МОП-транзистором синхронного выпрямителя, расположенного на вторичной стороне, требуется дополнительный сигнальный трансформатор для передачи сигнала управления затвором. Использование новых миниатюрных трансформаторов серии LPD8035V от Coilcraft с рейтингом напряжения 1500 Vrms позволяет безболезненно решить проблему стоимости и габаритов.

Еще одной причиной сокращения разрыва по количеству используемых компонентов между двумя топологиями источников питания является добавление второго LC-фильтра в обратноходовых преобразователях. Часто можно встретить утверждение о том, что обратноходовые преобразователи являются более шумными, чем прямоходовые из-за значительных пульсаций тока во вторичных обмотках. Это означает, что если вы используете одноступенчатый LC-фильтр в обратноходовом преобразователе, то вам потребуется гораздо большая индуктивность и конденсатор, чтобы получить такой же уровень пульсаций выходного напряжения, как и у прямоходового преобразователя. На практике для решения указанной проблемы можно применять несколько подходов:

  • использовать силовой трансформатор с большой индуктивностью;
  • использовать большой выходной конденсатор;
  • использовать двухступенчатый LC-фильтр.

Первые два варианта обычно оказываются более дорогими. При использовании двухступенчатого LC-фильтра, каждый из компонентов может выбираться исходя из оптимизации конкретного параметра схемы (низкого тока пульсации, низких потерь в сердечнике и т. д.). В результате, такой подход обеспечивает тот же уровень пульсаций напряжения при меньших габаритах и стоимости.

По указанным выше причинам современные прямоходовые и обратноходовые преобразователи мало отличаются по количеству используемых компонентов, габаритам и общей стоимости, в отличие от традиционных прямоходовых и обратноходовых источников питания. В таблице 2 показаны результаты практического сравнения габаритов и стоимости современного обратноходового преобразователя (рис. 5 сверху) и современного прямоходового преобразователя (рис. 5 снизу). Оба источника питания имеют выходное напряжение 12 В и мощность 51 Вт. Они построены на базе контроллера LT4295 PD от Analog Devices. Фотографии печатных плат представлены на рис. 5, а упрощенные принципиальные схемы на рисунках 1 и 2. Как видно из таблицы 2, обратноходовой преобразователь по-прежнему остается более компактным и менее дорогим, но разница уже не столь значительная.

Таблица 2. Сравнение характеристик реальных современных преобразователей

В статье подробно рассмотрены популярные топологии силовых преобразователей: обратноходовая, прямоходовая, мостовая, полумостовая и резонансная. Для каждой из них указаны области применения. Приведены поясняющие схемы и комментарии. Статья представляет собой сокращенный перевод [1].

Когда речь заходит о выборе схемы силового каскада, многие в первую очередь интересуются выходной мощностью. Этот критерий, разумеется, очень важный, но не единственный. Конечно, вряд ли кто-то использует мостовую схему, например в 10-Вт преобразователе, но не всегда задача выбора столь проста, как может показаться. Помимо выходной мощности важны входное и выходное напряжения, выходной ток, тип нагрузки, требуемая энергоэффективность, массогабаритные показатели, изолированный или неизолированный преобразователь.

Читайте также:  Какая польза от красной рябины для здоровья

Рассмотрим наиболее часто встречаемые конфигурации силового каскада: прямоходовой, обратноходовой, пушпульный, полумостовой, мостовой, резонансные схемы.

Обратноходовой преобразователь

Обратноходовой преобразователь (ОП) (как и прямоходовой преобразователь, ПП) довольно часто встречается при мощностях менее 1 кВт. Одно из его достоинств — очень простая схема (см. рис. 1). Ключевым элементом преобразователя является трансформатор, хотя в данном случае он играет роль накопителя энергии и выполняет функции дросселя — при закрытом ключе вторичная обмотка отдает в нагрузку энергию, которая запасалась при открытом ключе, когда первичная обмотка была подключена к сети.

Рис. 1. Базовая топология обратноходового преобразователя

В приведенной схеме обеспечивается гальваническая развязка между первичной и вторичной цепями. ОП удобно применять, когда требуется обеспечить высокое выходное напряжение при относительно малом токе. Конечно, можно использовать эту схему и при низких напряжениях и высоких токах, но следует иметь в виду, что ОП свойственны большие токовые пульсации и пиковые токи, поэтому к компонентам фильтра на низкой стороне предъявляются повышенные требования, отчего их стоимость возрастает. Велики также и пульсации напряжения, поэтому выходной сглаживающий фильтр лучше выбрать типа «пи».

При коэффициенте заполнения 50% амплитуда пульсаций тока через выходной конденсатор примерно в 1,6 раза превышает выпрямленный ток нагрузки. Поэтому эквивалентное последовательное сопротивление (ESR) этого конденсатора должно быть невелико. Это означает, что для надежной работы следует включить параллельно до 5 электролитических конденсаторов или использовать дорогостоящие керамические конденсаторы. Но, скорее всего, придется использовать хотя бы один электролитический конденсатор, причем его сопротивление должно быть достаточно небольшим, чтобы сохранить устойчивость преобразователя. Поэтому при больших выходных токах, например, 5 В, 10 А, следует отдать предпочтение ПП.

Индуктивность рассеяния первичной обмотки трансформатора должна быть как можно меньше. При открытом ключе в ней запасается энергия, которая не передается во вторичную обмотку и при закрытии ключа вызывает всплески перенапряжения, из-за которых приходится выбирать ключ с повышенным максимально допустимым напряжением и использовать снабберные цепочки. Последние снижают энергоэффективность преобразователя.

Следует отметить еще один недостаток ОП — отношение пикового значения тока к среднему существенно больше, нежели в других топологиях, поэтому приходится выбирать силовой ключ, величина максимально допустимого тока которого больше, чем в других преобразователях, что увеличивает стоимость ключа. Ток ключа в ОП в 1,5—2 раза больше, чем в ПП и полумостовом преобразователе. Ток в выпрямительном диоде в 3—4 раза больше, чем средний ток.

Обратноходовой преобразователь с двумя силовыми ключами

Если не удается уменьшить индуктивность рассеяния или снабберной цепочки недостаточно, чтобы снизить перенапряжения, применяется схема из двух силовых ключей на высокой стороне (см. рис. 2). Отметим, что в этом случае повышается и эффективность преобразователя, т.к. энергия, запасенная в индуктивности рассеяния первичной обмотки, не рассеивается в снабберной цепи, а передается обратно во входной конденсатор. Двухключевая схема позволяет выбрать силовой ключ с меньшим максимально допустимым напряжением. При этом потери в двух последовательно включенных ключах с меньшим максимально допустимым напряжением примерно такие же или даже меньше, чем в более высоковольтном ключе.

Рис. 2. Базовая схема ОП с двумя ключами

К недостаткам можно отнести усложнение схемы, ограничение величины коэффициента заполнения (менее 50%). Соотношение витков должно быть выбрано так, чтобы напряжение на вторичной обмотке достигло требуемой величины, прежде чем напряжение на первичной обмотке достигнет уровня, при котором диоды D1 и D2 начнут проводить. Иначе запасенная энергия начнет возвращаться во входной конденсатор, а не поступать в нагрузку.

ОП может работать в режимах непрерывного 1 или прерывистого токов 2. Однако сейчас становится популярен специальный случай режима прерывистого тока, так называемый режим критической проводимости 3 или режим граничной проводимости 4. Это компромиссный режим с некоторыми интересными особенностями, и он довольно легко реализуется в одноключевой схеме.

В режиме DCM ток через дроссель выходной цепи уменьшается до нуля в период, когда силовой ключ Q1 закрыт. Фактически в этот момент ни через один элемент преобразователя не протекает ток, и его можно назвать «мертвым временем». В режиме CCM ток постоянно протекает через дроссель при любом состоянии силового ключа. В этих режимах преобразователь работает при постоянной частоте коммутации. Режим CRM является граничным между описанными выше. Как и в DCM, ток в дросселе спадает до нуля, но «мертвое время» отсутствует. Для достижения граничного режима варьируется время закрытого и открытого состояний ключа — преобразователь работает на переменной частоте и зависит, в частности, и от индуктивности дросселя, и от максимально допустимого пикового тока, который задается управляющим контроллером.

На рисунке 3 показано напряжение сток-исток силового MOSFET в различных режимах. Заметьте, что в режиме CRM/BCM открытие MOSFET происходит в момент первого колебания в нижней точке кривой (valley), после того как энергия сердечника трансформатора уменьшилась до минимума. При этом коммутация происходит при минимальном напряжении на ключе, и потери на коммутацию уменьшаются. По существу, наблюдается квазирезонансный режим (QR). Такой метод коммутации позволяет увеличить энергоэффективность преобразователя.

Рис. 3. Напряжение сток-исток силового MOSFET в различных режимах

Обратноходовой преобразователь в режиме прерывистого тока DCM

Этот режим достаточно просто реализовать. Частота коммутации фиксирована, передаточная характеристика имеет один полюс, и полоса пропускания обратной связи может быть достаточно большой и легко компенсироваться. Габариты трансформатора в этом режиме минимальны, т.к невелики и требования к индуктивности рассеяния первичной обмотки при условии, что выходной ток относительно невелик.

Отметим, что ток в выходном диоде спадает до нуля еще до того, как откроется силовой ключ на высокой стороне, поэтому отсутствуют шумы коммутации диода и потери на восстановление, которые происходят при запирании диода обратным напряжением.

К сожалению, пиковые токи в этом режиме очень велики, больше чем в остальных режимах. Соответственно, нужно выбирать силовой ключ и выходной диод с большими максимально допустимыми токами. Повышаются и требования к выходному конденсатору из-за больших значений пульсирующего тока в нем — потребуется выбрать конденсатор лучшего качества с малым ESR. ОП в этом режиме следует применять при выходной мощности не более 100 Вт. В случае, когда требуется получить источник с большим выходным напряжением, ОП в этом режиме можно использовать вплоть до выходной мощности 1 кВт, но следует обратить внимание на выбор компонентов.

Обратноходовой преобразователь в режиме граничной проводимости CRM/BCM

Режим используется для оптимизации ОП. В этом режиме время между проводящим состоянием силового ключа и выпрямительного диода сокращается до минимума (напомним, что частота коммутации варьируется), и уменьшается кратность пикового тока по отношению к среднему. Трансформатор из-за увеличенного числа витков может быть чуть больше, чем в режиме прерывистого тока, т.к. в режиме CRM/BCM при максимальной нагрузке и меньшем входном напряжении ОП работает и при меньшей частоте. Квазирезанонансный режим коммутации и отсутствие потерь на восстановление в выпрямительном диоде повышают эффективность ОП в большинстве приложений с малым выходным током.

С первого взгляда может показаться, что работа при переменной частоте коммутации создаст проблемы с фильтрацией электромагнитных помех, но, как показывает опыт, опасения напрасны, т.к. при уменьшении потерь обычно уменьшаются и помехи. В этом режиме очень просто реализовать синхронное выпрямление, а значит, еще больше снизить потери. Граничный режим может оказаться неприемлемым в случае необходимости синхронизации от внешнего источника частоты.

Обратноходовой преобразователь в режиме непрерывного тока CCM

Эта топология используется, когда требуется снизить пульсации тока в выходном конденсаторе и получить минимальное соотношение между пиковым и средним токами силового ключа и выпрямительного диода. ОП мощностью меньше 20 Вт выпускаются в виде микросхемы. Из-за минимального тока MOSFET он может быть реализован на одном кристалле с управляющей схемой.

Этот режим полезен при больших выходных мощностях свыше 100 Вт. Следует учесть, что в момент запирания выпрямительного диода ток в нем продолжает протекать, поэтому неизбежны потери на обратное восстановление. Чтобы уменьшить их, рекомендуется применять диоды Шоттки. Ультрабыстрые диоды при запирании генерируют высокочастотный шум и потому лучше их не использовать. Открытие силового ключа происходит в момент, когда протекает ток во вторичной обмотке трансформатора, поэтому и ток в силовом ключе устанавливается скачком, а потом начинает плавно нарастать.

Читайте также:  Как настроить кухонные шкафы

В передаточной функции системы желательно избегать нуля в правой полуплоскости, иначе придется прибегнуть к сложной схеме компенсации и уменьшить полосу пропускания обратной связи, что негативно скажется на переходных процессах в ОП.

Прямоходовой преобразователь

Прямоходовой преобразователь практически всегда является понижающим. Силовой ключ на первичной стороне и выпрямительный диод на вторичной одновременно проводят ток, т.е. через трансформатор передается униполярный импульс напряжения, поэтому чтобы избежать насыщения сердечника трансформатора, коэффициент заполнения не должен превышать 0,5. При этом условии в момент паузы сердечник трансформатора успевает размагнититься.

Прямоходовой преобразователь с размагничивающей обмоткой

Возможно несколько вариантов построения схемы первичной стороны ПП. На рисунке 4 представлен один из них. В этой схеме для размагничивания сердечника трансформатора во время выключения силового ключа используется специальная размагничивающая обмотка, число ее витков обычно такое же, как у первичной обмотки. Максимальный коэффициент заполнения — менее 0,5.

Рис. 4. Прямоходовой преобразователь с обмоткой сброса

Обратите внимание — при закрытии силового ключа к нему прикладывается двойное напряжение входной сети. Это обстоятельство, а также выбросы напряжения из-за энергии, запасенной в индуктивности рассеяния, должны учитываться при выборе максимально допустимого напряжения силового ключа. Индуктивность рассеяния можно минимизировать, если выполнить намотку первичной и размагничивающей обмоток бифилярным проводом.

Например при напряжении сети ≈220 В, с учетом возможного превышения напряжения на 10%, получим 242 В × 1,4 × 2 = 677,6 В. Учитывая выбросы напряжения от индуктивности рассеяния, следует выбрать ключ с максимально допустимым напряжением не менее 1000 В. Схема вторичной части остается неизменной при всех вариантах топологии первичной части.

Прямоходовой преобразователь со снабберной цепочкой

В данной конфигурации (см. рис. 5) для ограничения напряжения при выключении ключа служит снабберная цепочка (Ds, Rs, Cclamp). Отпадает необходимость в размагничивающей обмотке, следовательно, уменьшается размер трансформатора и стоимость изделия. Однако вся энергия, запасенная в сердечнике, рассеивается на резисторе Rs, и такая схема крайне неэффективна с энергетической точки зрения.

Рис. 5. Прямоходовой преобразователь со снабберной цепочкой

Снабберная цепочка и первичная обмотка трансформатора составляют квазирезонансный контур. Величина конденсатора должна подбираться так, чтобы ограничить напряжение на закрытом силовом ключе и обеспечить быстрое затухание тока в контуре с тем, чтобы достичь максимального коэффициента заполнения. Обычно такие схемы используются при выходной мощности не более 100 Вт во избежание значительных потерь на резисторе Rs.

Прямоходовой преобразователь с активным ограничением

Эта топология (см. рис. 6), возможно, наилучший вариант схемы с одним силовым ключом. Для активного ограничения дополнительно используется высоковольтный слаботочный MOSFET. Для управления требуется специальная микросхема контроллера, синхронизирующая работу обоих ключей.

Схема с активным ограничением сходна с рассмотренной выше, но энергия в этом случае не рассеивается на резисторе снабберной цепи.

Рис. 6. Прямоходовой преобразователь с активным ограничением

Это очень эффективная схема, т.к. при правильном выборе конденсатора обеспечивается квазирезонансный режим переключения силового ключа и, следовательно, малые коммутационные потери и электромагнитные помехи. В этой схеме коэффициент заполнения может превышать 0,5 и не требуется использовать ключ с удвоенным максимально допустимым напряжением.

В этой схеме также довольно просто использовать синхронный выпрямитель. Подобная топология применяется при мощностях до 500 Вт и даже несколько выше. Основной недостаток рассмотренной топологии: усложнение схемы управления — требуется дополнительный драйвер затвора и необходимо строго выдерживать заданную последовательность переключения. Учитывая квазирезонансный режим переключения, повышенные требования предъявляются к трансформатору — индуктивность рассеяния первичной обмотки должна быть как можно меньше. Рекомендуется также вводить в сердечник трансформатора воздушный зазор, чтобы уменьшить индуктивность первичной обмотки и оптимизировать процесс резонанса при выключении силового ключа.

Пассивное ограничение без рассеяния

Это довольно интересная конфигурация (см. рис. 7), в которой используются элементы вышеописанных топологий: размагничивающая обмотка, снабберная цепь и активное ограничение. В этой схеме конденсатор аккумулирует энергию индуктивности рассеяния между первичной обмоткой и обмоткой размагничивания и управляет скоростью нарастания напряжения на силовом ключе при его запирании, уменьшая тем самым коммутационные потери.

Рис. 7. Пассивное ограничение без рассеяния

При открытом силовом ключе ограничивающий конденсатор разряжается через размагничивающую обмотку и отдает энергию входному конденсатору. По сути, перед нами снабберная цепь без потерь. При увеличении значения емкости Cclamp наступает квазирезонансный режим переключения. Коэффициент заполнения — менее 0,5.

Прямоходовой преобразователь с двумя силовыми ключами

Схема первичной стороны в этом случае такая же, как и в обратноходовом преобразователе (см. рис. 2). Эта схема наиболее эффективна — энергия, запасенная в трансформаторе и индуктивности рассеяния, возвращается во входной конденсатор. Коэффициент заполнения не превышает 0,5. Эту схему применяют в промышленных приложениях при мощностях до 1 кВт и даже несколько больше при жестких условиях эксплуатации, где требуется надежность.

Популярной разновидностью этой топологии является схема, когда два преобразователя работают со сдвигом фазы на 180°, а их напряжение суммируется на выходном конденсаторе.

Прямоходовой преобразователь

В этих преобразователях магнитный сердечник используется не полностью, т.к. рабочая точка кривой перемещается по кривой BH только в пределах одного квадранта. Поэтому габариты трансформатора больше, чем в мостовой, полумостовой и двухтактной пушпульной схемах, где происходит полное перемагничивание сердечника. Но потери в трансформаторе в прямоходовом преобразователе меньше, чем в этих топологиях, т.к. потери пропорциональны величине B2.

Для управления ПП желательно использовать режим с обратной связью по току, но выбросы на переднем фронте при резонансном переключении могут составить проблему. В этом случае предпочтительнее режим управления по напряжению.

Коэффициент заполнения может превышать 0,5, если соблюдается вольт-секундный баланс. Если при этом применяется метод управления по току, то для задания по величине тока необходимо использовать не постоянное значение, а кривую первого или более высоких порядков (slope compensation).

Мостовой преобразователь

Такой преобразователь (см. рис. 8) используется при мощностях до 5 кВт и в телекоммуникациях для 48-В шины при мощностях свыше 500 Вт. Полумостовой преобразователь получается заменой ключей Q3, Q4 на конденсаторы. Он применяется при меньших мощностях — примерно до 2 кВт. Отметим, что и в мостовом, и в полумостовом преобразователях через трансформатор передаются импульсы разной полярности, поэтому происходит перемагничивание сердечника, и рабочая точка перемещается по кривой ВН во всех четырех квадрантах. При этом потери в сердечнике больше, т.к. они пропорциональны В2.

Рис. 8. Мостовой преобразователь

Для мостового преобразователя (в отличие от полумостового) отлично подходит режим управления с обратной связью по току. К недостаткам мостового преобразователя следует отнести более сложный драйвер ключей и риск возникновения сквозного тока, возникающего при переключении ключей верхнего и нижнего плечей. Мостовой и полумостовой преобразователи применяются для понижения напряжения. Если же требуется повышающий преобразователь для больших мощностей, то обычно используют резонансные LLC-преобразователи.

Резонансные преобразователи

Этот тип преобразователей используется, когда требуется уменьшить потери на коммутацию и повысить эффективность преобразователя. На рисунке 9 показан полумостовой LLC-преобразователь. В резонансных схемах в цепь первичной обмотки добавляются конденсатор или дроссель (в данном случае дроссель), чтобы реализовать коммутацию при нулевом напряжении (ZVS) или нулевом токе (ZVC). Для получения полностью резонансной схемы необходимо изменять коэффициент заполнения и частоту коммутации так, чтобы в цикл коммутации укладывался целый период резонансной частоты.

Рис. 9. Резонансный полумостовой LLC-преобразователь

Резонанс происходит в цепи, состоящей из индуктивности рассеяния и конденсаторов. Обычно индуктивность рассеяния точно неизвестна, поэтому в цепь вводят дополнительный дроссель Lr для настройки резонансного контура. Резонансный преобразователь, по сути, является источником тока, следовательно, нет необходимости использовать дроссель в выходном фильтре. В приведенной на рисунке схеме реализованы режимы ZVS, ZVC, и она отлично подходит для случаев, когда требуется получить высокое входное напряжение.

Ссылка на основную публикацию
Прямое прикосновение в электроустановках определение
Для начала раскроем понятия, используемые в определении прямого и косвенного прикосновения. Проводящая часть – это часть, которая может проводить электрический...
Простой рецепт леденцов в домашних условиях
Базовый рецепт Леденцы по этому рецепту получаются именно такими, какие в советские времена продавали практически на каждом углу. 10 ст....
Простой рецепт плова в казане
Сытный, рассыпчатый узбекский плов можно приготовить только в большом казане на костре. Если у вас есть такая возможность, то пошаговый...
Прямоугольная беседка своими руками из дерева пошагово
Вероятно, вы уже столкнулись с тем, что в интернете очень мало хороших статей и видео на тему возведения деревянной беседки...
Adblock detector