Теплоаккумулятор на фазовом переходе

Теплоаккумулятор на фазовом переходе

Использование теплоты плавления некоторых веществ для аккумулирования теплоты обеспечивает высокую плотность запасаемой энергии, небольшие перепады температур и стабильную температуру на выходе из теплового аккумулятора. Однако большинство ТАМ в расплавленном состоянии являются коррозионно-активными веществами, в большинстве своем имеют низкий коэффициент теплопроводности, изменяют объем при плавлении и относительно дороги. В настоящее время известен достаточно широкий спектр веществ, обеспечивающих температуру аккумуляции от 0 до 1400 °C. Следует отметить, что широкое применение тепловых аккумуляторов с плавящимся ТАМ сдерживается, прежде всего, соображениями экономичности создаваемых установок.

При небольших рабочих температурах (до 120 °C) рекомендуется применение кристаллогидратов неорганических солей (Табл.8), что связано в первую очередь с использованием в качестве ТАМ природных веществ. Для реального применения рассматриваются только вещества, не разлагающиеся при плавлении либо растворяющиеся в избыточной воде, входящей в состав ТАМ.

Таблица 8. Основные свойства ТАМ на основе кристаллогидратов

ТАМ , К , кДж/кг Удельная теплоемкость, Плотность, Коэффициент
теплопроводности, вязкости,
Полиэтилен- гликол­ь 293-298 2,26 0,16 11,5
Октадекан 2,18 0,15 3,9
Парафин 46-48 2,08 0,34
Нафталин 0,8
Ацетамин

Использование органических веществ (Табл.9) практически полностью снимает вопросы коррозионного разрушения корпуса, обеспечивает высокие плотности запасаемой энергии, достаточно хорошие технико-экономические показатели. Однако в процессе работы теплового аккумулятора с органическими ТАМ происходит снижение теплоты плавления вследствие разрушения длинных цепочек молекул полимеров, а из-за низкого коэффициента теплопроводности требуется создание и применение развитых поверхностей теплообмена, что, в свою очередь, накладывает конструктивные ограничения на использование ТА.

Таблица 9. Основные свойства плавящихся органических ТАМ

Перспективно использовать смеси и сплавы органических и неорганических веществ, позволяющие обеспечивать необходимые значения температур плавления и большие сроки службы. Известно, что лучшим вариантом теплообменной поверхности является ее полное отсутствие, т. е. непосредственный контакт теплоаккумулирующего материала и теплоносителя. Следовательно, необходимо подбирать как ТАМ, так и теплоносители по признакам, обеспечивающим работоспособность конструкций.

Теплоаккумулирующие материалы в этом случае должны отвечать следующим требованиям:

— кристаллизоваться отдельными кристаллами;

— иметь большую разность плотностей твердой и жидкой фаз;

— быть химически стабильными;

— не образовывать эмульсий с теплоносителем.

Теплоносители подбираются по следующим признакам:

— химическая стабильность в смеси с ТАМ;

— большая разница плотностей по отношению к ТАМ;

— малая способность к вспениванию;

— и ряд других требований, вытекающих из особенностей конструкции [54,55].

Основные конструктивные исполнения тепловых аккумуляторов фазового перехода представлены на Рис. 27.

Рис.27. Основные типы тепловых аккумуляторов фазового перехода: а – капсульный; б – кожухотрубный; в, г – со скребковым удалением ТАМ; д – с ультразвуковым удалением ТАМ; е, ж – с прямым контактом и прокачкой ТАМ; з, и – с испарительно-конвективным переносом тепла; 1 – жидкий ТАМ; 2 – твердый ТАМ; 3 – поверхность теплообмена; 4 – корпус теплового аккумулятора; 5 – теплоноситель; 6 – граница раздела фаз; 7 – частицы твердого ТАМ; 8 – промежуточный теплообменник; 9 – паровое и жидкостное пространства для теплоносителя.

| следующая лекция ==>
Аккумуляция тепловой энергии | Аккумуляторы энергии, основанные на выделении и поглощении теплоты при обратимых химических и фотохимических реакциях

Дата добавления: 2017-12-07 ; просмотров: 2226 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Под аккумулированием на основе теплоты фазового перехода в большинстве случаев понимают аккумулирование теплоты плавления. Часто как дополнение к теплоте фазового перехода используется теплота нагрева (внутренняя энергия) жидкости или твердой фазы. Это увеличивает емкость аккумулятора, но лишает возможности использования преимуществ теплоснабжения при постоянной температуре.

Технические решения. Системы аккумулирования тепловой энергии, основанные на использовании теплоты фазового перехода, активно исследуются, но многие из них в настоящее время находятся еще на стадии разработки и внедрения. Их главными преимуществами являются высокая тепловая емкость, постоянная рабочая температура и низкое давление; недостатками — невысокая стабильность большинства ТАМов с фазовым переходом и усложнение конструкции теплового аккумулятора, необходимость решения проблемы теплообмена с аккумулирующей средой.

Читайте также:  Увлажнитель воздуха для детей какой лучше комаровский

В последнее время в тепловом аккумулировании в интервале температур до 100 °С для теплоаккумулирующих материалов с фазовым переходом не было предложено никаких новых веществ, кроме кристаллогидратов. Однако в состав кристаллогидратов входит вода и поэтому они недостаточно стабильны; максимальным для кристаллогидратов являются 50 рабочих циклов заряд—разряд. При дальнейшей эксплуатации изменяются их физико-химические и теплофизические характеристики, что приводит к выходу из строя теплового аккумулятора, в котором они применяются .

Аккумуляторы на основе теплоты фазового перехода относятся к системам с постоянным давлением и массой; изменения объема ТАМов с фазовым переходом, которые происходят в процессе проведения циклов плавление—затвердение, как правило, достаточно незначительны.

Эффективная аккумулирующая среда на основе фазового перехода должна иметь следующие свойства:

  • высокую энтальпию фазового перехода и плотность;
  • удобную для эксплуатационных условий температуру плавления;
  • высокую теплоемкость в твердой и жидкой фазах;
  • высокую теплопроводность в твердой и жидкой фазах;
  • отсутствие тенденции к расслоению теплоаккумулирующего материала и температурную стабильность;
  • отсутствие возможности переохлаждения при затвердении и перегрева при плавлении;
  • низкое термическое расширение и незначительное изменение объема при плавлении;
  • слабую химическую активность, что позволяет использовать недорогие конструкционные материалы для изготовления тепловых аккумуляторов и вспомогательного оборудования;
  • безопасность (отсутствием отравляющих паров, а также опасных реакций с рабочей или теплообменной средой);
  • большие ресурсы работы. Теплоаккумулирующие материалы, способные накапливать тепло за счет фазовых переходов и их основные теплофизические и энергетические характеристики. Основные теплофизические и энергетические характеристики ТАМов-кристаллогидратов приведены в соответствующей таблице.

Употребляемое в таблицах понятие «удельная энергия» — это удельный показатель энергоемкости на единицу массы или объема, который учитывает теплоту фазового перехода и теплоту, накопленную за счет теплоемкости в процессе нагрева до температуры плавления. В качестве теплоаккумулирующих материалов с фазовым переходом используются как моносоставные, так и полисоставные (в том числе бинарные) материалы.

Применение бинарных систем обеспечивает некоторые преимущества:

  • точку плавления можно выбирать изменением количественного соотношения солей в смеси;
  • высокая плотность энергии может быть достигнута даже при низких температурах плавления;
  • дорогостоящие вещества с высокими теплоаккумулирующими свойствами могут быть использованы в смеси с дешевыми, при этом тепловая емкость остается почти неизменной. Бинарные системы при их использовании в аккумуляторах должны плавиться и затвердевать аналогично гомогенному чистому веществу. Этому условию отвечают два типа специальных составов смесей — эвтектическая и дистектическая. Эвтектический состав смеси ТАМов представлен нижней точкой на диаграммах плавления; дистектический состав представляет собой смесь, которая ведет себя почти как чистое вещество.

Результаты анализа известных теплоаккумулирующих материалов показывают, что наиболее эффективными для применения в ТА с невысокой рабочей температурой являются: парафин — вследствие высокой энтальпии и неагрессивности, вода — из-за низкой стоимости и высокой теплоемкости, тяжелый бетон — благодаря конструкционным свойствам и хорошей теплопроводности. Низкотемпературное аккумулирование. Аккумулирование с использованием энергии фазового перехода (замораживание воды при О °С) является очень эффективным методом низкотемпературного аккумулирования. Во многих государствах разработаны и применяются различные системы аккумулирования с замораживанием воды. Аккумулирование энергии посредством использования льда особенно выгодно в климатических зонах, где нагрузки на охлаждение в летнее время можно сравнить с нагрузками обогрева зимой, что предполагает годовое циклирование, т. е. эффективное двойное использование системы аккумулирования.

Изобретение относится к области двигателестроения, в частности к устройствам предпусковой тепловой подготовки двигателя внутреннего сгорания (ДВС) при отрицательных температурах окружающей среды.

Известна установка воздухообогрева двигателей автомобилей, состоящая из узла нагрева и подачи воздуха, диффузора, воздуховодов и соединительных рукавов. В свою очередь узел нагрева и подачи воздуха состоит из калорифера и вентилятора, приводимого в работу от электродвигателя. При функционировании установки калорифер нагревает воздух, который с помощью вентилятора подается через диффузор, воздуховоды и соединительные рукава на радиатор или в картер обогреваемого двигателя (см. Безгаражное хранение автомобилей при низких температурах. Караменко Г.В., Николаев В.А., Шаталов А.И. — М.: Транспорт, 1984, 136 с.).

Читайте также:  Композиции с туями и можжевельниками

Кроме того, известно устройство в виде теплового аккумулятора фазового перехода, состоящего из теплоизолированного вакуумированного цилиндрического корпуса, съемной крышки, входного и выходного отверстий. В эти отверстия запрессованы впускная и выпускная трубы. Внутри корпуса находится теплообменник, состоящий из коаксиально расположенных цилиндрических капсул. Капсулы заполнены теплоаккумулирующим материалом. Теплообменник монтируется на съемной крышке при помощи болтового соединения и приваривается к корпусу (см. Патент РФ 2187049 С1, МКИ 7 F24Н 7/00. Тепловой аккумулятор фазового перехода. Авторы: Шульгин В.В., Гулин С.Д., Никифоров Г.И., Кинев Ю.Г., Крапивко О.В., Золотарев Г.М. (РФ) — №2000132463/06, заявлено 25.12.2000 г., опубл. 10.08.2002 г. бюл. №22. Открытое издание. Прототип).

Известное устройство позволяет накапливать теплоту при работающем ДВС за счет теплообмена его теплоносителя (охлаждающей жидкости системы охлаждения или масла, системы смазки) с теплоаккумулирующим материалом (ТАМ) и отдавать ее в последующем теплоносителю, поддерживая их заданную температуру, необходимую для подготовки к пуску двигателя, в течение определенного (ограниченного) промежутка времени.

Однако указанное устройство имеет недостаток, оно не предусматривает поддержания в течение длительного промежутка времени требуемой температуры теплоносителя при неработающем (выключенном) ДВС в условиях низких температур окружающей среды.

Задачей предлагаемого изобретения является аккумулирование тепловой энергии, используемой для подогрева теплоносителя (охлаждающей жидкости, масла) выключенного ДВС в течение длительного промежутка времени, с минимальной тратой энергии, в условиях низкой температуры окружающей среды.

Технически задача решается за счет того, что в тепловом аккумуляторе фазового перехода с саморегулируемым устройством электроподогрева (ТАФП) используются саморегулирующиеся нагревательные элементы на позисторной керамике, способные работать от внешнего источника при выключенном ДВС или от электрической сети машины, при выключенном двигателе. Саморегулирующиеся нагревательные элементы на позисторной керамике обеспечивают подогрев ТАМа до потребной температуры с минимальной затратой электроэнергии.

Техническим результатом предложенного изобретения является поддержание в течение длительного промежутка времени, необходимой температуры теплоносителя (охлаждающей жидкости системы охлаждения или масла системы смазки ДВС) при работающем и выключенном двигателе, что позволяет подготовить к пуску двигатель в условиях низких температур окружающей среды.

Тепловой аккумулятор фазового перехода, содержащий теплоизолированный вакуумированный цилиндрический корпус со съемной крышкой, имеющей входное и выходное отверстия с запрессованными в них впускной и выпускной трубами, капсулы, заполненные изменяющим агрегатное состояние в рабочем диапазоне температур теплоаккумулирующим материалом, выполненные из коаксиально расположенных цилиндров с образованием между ними кольцевых зазоров для прохода жидкого теплоносителя, отличающийся тем, что снабжается устройством электроподогрева с саморегулирующимися нагревательными элементами на позисторной керамике, работающим от внешнего источника питания или электрической сети машины при выключенном двигателе.

Тепловой аккумулятор фазового перехода с саморегулируемым устройством электроподогрева поясняется фиг.1, на которой представлена схема, обеспечивающая его работу, где 1 — наружный корпус; 2 — тепловая изоляция; 3 — внутренний корпус; 4 — цилиндрические капсулы с ТАМ; 5 — щелевые зазоры; 6 — входной патрубок; 7 — выходной патрубок; 8 — болтовое соединение; 9 — крышка из диэлектрического материала; 10 — съемная крышка; 11 — саморегулирующиеся нагревательные элементы на позисторной керамике; 12 — корпус нагревательного элемента; 13 — токоподводящая пластина; 14 — ввод электропитания (9+12, 24 В).

ТАФП используется в качестве устройства для подготовки к пуску ДВС в условиях низкой температуры окружающей среды.

Между наружным корпусом 1 и внутренним корпусом 3, изготовленных из нержавеющей стали, располагается тепловая изоляция 2. Для тепловой изоляции 2 можно использовать вакуумную (вакуумно-порошковую) тепловую изоляцию; тепловую изоляцию, выполненную из теплоизоляционных материалов; комбинированную тепловую изоляцию, состоящую из вакуумной прослойки и каких-либо теплоизоляционных материалов. ТАФП имеет в своем составе теплообменник, состоящий из цилиндрических капсул с ТАМ 4. Размещение ТАМ в цилиндрических капсулах обеспечивает высокую надежность конструкции и позволяет создавать развитую поверхность теплообмена.

Читайте также:  Увлажнитель воздуха баллу инструкция

Цилиндрические капсулы с ТАМ 4 представляют собой коаксиально расположенные цилиндры с образованием между ними щелевых зазоров 5, предназначенных для прохода жидкого теплоносителя. Благодаря такой конструкции обеспечивается более рациональное использование внутреннего объема ТАФП.

В качестве ТАМ предлагается использовать вещество, способное претерпевать обратимое полиморфное превращение, которое не вызывает существенного изменения объема ТАМ в рабочем интервале температур: кристаллогидраты солей и оснований; органические вещества; соли и основания; различные смеси этих веществ.

Входной патрубок 6 служит для подвода к щелевым зазорам 5 теплоносителя для его нагрева. Выходной патрубок 7 служит для вывода от щелевых зазоров 5 теплоносителя.

Крышка из диэлектрического материала 9 и съемная крышка 10 крепятся болтовым соединением 8 к корпусу нагревательного элемента 12.

В качестве саморегулирующихся нагревательных элементов на позисторной керамике 11 используются терморезисторы (позисторы) с положительным температурным коэффициентом сопротивления, которые через токоподводящую пластину 13 от ввода электропитания 14 (внешнего источника питания или электросети машины) нагреваются, передавая теплоту теплоносителю.

Работа устройства. Накопление ТАФП теплоты осуществляется при работе ДВС за счет теплообмена его теплоносителя с цилиндрическими капсулами с ТАМ 4. Теплоноситель подводится через входной патрубок 6, проходит через щелевые зазоры 5 и отводится через выходной патрубок 7. При этом ТАМ нагревается в твердой фазе до температуры плавления, плавится, а затем нагревается в жидкой фазе до некоторой температуры, при которой наступает тепловое равновесие между ним и теплоносителем. При включении саморегулируемого устройства электроподогрева при выключенном двигателе накопление ТАФП теплоты осуществляется через саморегулирующиеся нагревательные элементы на позисторной керамике 11 через токоподводящую пластину 13 от ввода электропитания 14 (аккумуляторных батарей или внешнего источника электрического тока).

Хранение накопленной теплоты осуществляется за счет наличия между наружным корпусом 1, внутренним корпусом 3 тепловой изоляции 2 и крышки из диэлектрического материала 9, съемной крышки 10, крепящихся болтовым соединением 8 к корпусу нагревательного элемента 12.

Разогрев ДВС происходит за счет теплообмена теплоносителя с расплавленным ТАМ, при котором последний претерпевает обратимый фазовый переход из жидкого состояния в твердое и выделяет скрытую теплоту кристаллизации. Выделяющаяся накопленная теплота передается теплоносителю и деталям ДВС.

Предлагаемое устройство позволяет накапливать теплоту при работающем и выключенном ДВС и отдавать ее теплоносителю (охлаждающей жидкости системы охлаждения, или маслу системы смазки) с целью поддержания их требуемой температуры, необходимой для подготовки пуска двигателя в условиях низких температур окружающей среды, используя энергию внешнего источника питания или электросети самой машины, с минимальными затратами электроэнергии.

1. Безгаражное хранение автомобилей при низких температурах. Караменко Г.В., Николаев В.А., Шаталов А.И. — М.: Транспорт, 1984, 136 с.

2. Патент РФ 2187049 С1 МКИ 7 F24Н 7/00. Тепловой аккумулятор фазового перехода. Авторы: Шульгин В.В., Гулин С.Д., Никифоров Г.И., Кинев Ю.Г., Крапивко О.В., Золотарев Г.М. (РФ) — №2000132463/06, заявлено 25.12.2000 г., опубл. 10.08.2002 г. бюл. №22. Открытое издание. Прототип.

Тепловой аккумулятор фазового перехода, содержащий теплоизолированный вакуумированный цилиндрический корпус со съемной крышкой, имеющей входное и выходное отверстия с запрессованными в них впускной и выпускной трубами, капсулы, заполненные изменяющим агрегатное состояние в рабочем диапазоне температур теплоаккумулирующим материалом, выполненные из коаксиально расположенных цилиндров с образованием между ними кольцевых зазоров для прохода жидкого теплоносителя, отличающийся тем, что снабжается устройством электроподогрева с саморегулирующимися нагревательными элементами на позисторной керамике, работающим от внешнего источника питания или электрической сети машины при выключенном двигателе.

Ссылка на основную публикацию
Adblock detector