Унч для наушников на транзисторах класса а

Унч для наушников на транзисторах класса а

Неудовлетворённость качеством воспроизведения музыкальных композиций звуковой картой компьютера заставило взяться за изготовление настольного усилителя. Решил, что это будет простой самодельный усилитель для наушников, собранный по классической схеме на одном транзисторном каскаде.

Однако есть замечание. Этот усилитель подходящим будет только в том случае, когда входной сигнал не требует усиления по напряжению (например, выход достаточной силы дают МП3 плеер или компьютер). Также, любой шум, возникающий в блоке питания, будет идти прямо через усилитель. По этой причине, необходимо использовать только стабилизированный источник питания. Диапазон выходного напряжения 10-20 В и ток 750 мА. Здесь используется N-канальный МОП — транзистор с обратным диодом для работы в ключевом и линейном режиме IRF610. В процессе изготовления усилителя было опробовано применение и других транзисторов: IRF510, IRF611, IRF612 и IRF710, все без исключения работали хорошо. Рекомендую не использовать IRF530 и IRF540 (обычно встречаются в источниках питания). Используемый LM317 — стабилизатор с регулируемым выходным напряжением позволяет очень точно настроить выходные параметры блока питания.

Так как этот усилитель будет находиться на рабочем столе в производственном офисе, он должен обязательно вписываться в рабочую обстановку. Повезло, что имелся вышедший из строя внешний CD-ROM, его дизайн подходил идеально. К тому же в его корпусе уже имелся выключатель, адаптер питания, розетка RCA и входы на задней панели, а также разъем для наушников на передней панели.

При изготовлении усилителя были использованы только те электронные компоненты и комплектующие, которые имелись в наличии. Обычные резисторы и плёночные конденсаторы. Конденсаторы ёмкостью 1 мкФ, 0.47 мкФ и 0,1 мкФ полипропиленовые. Но никто не мешает использовать и более качественные детали.

Радиаторы охлаждения имеют сравнительно небольшой объём охлаждающей площади, но обращаю внимание на то, что они прикручены напрямую к металлическому корпусу, который также принимает участие в рассевании тепла. Объём меньшего по размеру радиатора примерно 1,75 квадратного дюйма. Обязательно изолировать MOSFET и регулятор от радиаторов.

Работа усилителя была опробована при помощи регулируемого блока питания, он включался на низком напряжении. Смещение задается при помощи переменного резистора сопротивлением 100 кОм. Усилитель показал хорошую работу во всём интервале напряжения от 10 до 20 В, но всё же именно качественное воспроизведение звука начиналось при напряжении питания более 13 вольт.

Далее работа усилителя была проверены при помощи USB осциллографа. Это DSO-2150 с 60 МГц пропускной способностью и максимальной частотой дискретизации 150 мк/с. Увиденная синусоида показала себе с лучшей стороны от 20 Гц до 20 кГц.

Меандр 100 Гц

Прямоугольный 4800 Гц

Зелёного цвета входной сигнал, а желтый выходной. Мощность сигнала моего генератора не велика и это отражается на качестве исходных волн. Если сравнивать входное напряжение и выходное напряжение вы увидите, что коэффициент усиления цепи составляет около 0,8. Видно, что при 100 Гц присутствует легкий наклон. Наклон постепенно уменьшается, а частота увеличивается и за его пределами около 300 Гц квадрат волнового отклика отличный до 20 кГц — предела сигнала генератора. Поскольку музыка состоит в основном из синусоид это не проблема. Так как для регулировки громкости будут использоваться МП-3 плеер или компьютер, нет необходимости в потенциометре. Ещё один УНЧ, но уже с применением ламп, можно посмотреть тут.

Принципиальные электросхемы, подключение устройств и распиновка разъёмов

Недавно прослушанный у друга усилитель побудил тоже сделать себе А-класс УНЧ на наушники. Конструкция этого усилителя настолько проста, что даже начинающим радиолюбителям это удастся. В процессе сборки немного поэкспериментировал со значениями некоторых элементов, напряжением питания и токами покоя, чтобы получить собственное впечатление от лучшего звука. Разница в звучании эпичная, особенно когда сравнивать наушники подключенные через эту схему напрямую к выходу звуковой карты или к ужасающе шумному выходу наушников китайского усилителя от настольной аудиосистемы.

Схема УНЧ А-класса к наушникам

Усилитель был сделан всего за один день, кроме транзисторов и гнезд уже было большинство радиоэлементов. Остальное куплено на радиобазаре за копейки.

Сразу предупреждаю: усилитель А-класса, поэтому неплохо греется. Стоит сделать вентиляцию (на фото вентиляционных отверстий нет, что плохо). Вряд ли долго они выдержат конденсаторы, которые нагреваются в закрытом корпусе. Тем более недавно получил для ремонта оборудование, в котором была та же проблема: высушенные электролиты.

Первоначально предполагалось, что усилитель для наушников будет питаться от старого блока питания ноутбука, но во время прослушивания музыки было слышно как инвертор работает — шум в наушниках — непонятно связано ли это с ошибкой монтажа или низким качеством самого блока питания. В итоге применил трансформаторный источник питания, используя маленькие трансформаторы.

Блок питания работает по классической схеме трансформатор — диодный мост — 2000 мкФ конденсатор зашунтированный 100 нФ. Напряжение 23 В после нагрузки падает до 18 В и остается независимым от громкости с которой слушается музыка.

Читайте также:  В гостиную сделает квартиру

Всего сделал два усилителя — первый, сделанный по приведенной выше схеме, показался практически идеальным, но так было до тех пор пока не вышел из строя недостаточно охлажденный стабилизатор 7815 и не появилось +30 В на его выходе. Через мгновение перегорели резисторы R10 и транзисторы, не охлаждаемые радиаторами. Так что начал создавать второй, улучшенный усилитель, в котором:

  1. Использовал более слабые транзисторы QFET FQP1N60, которые желательны при характеристиках линейной работы звука при значительно более низком токе, чем BUZ10.
  2. Сделал сетевой фильтр на транзисторе IRFP450 (отдельно для каждого канала), который имеет дополнительную очень приятную функцию: он устраняет все щелчки наушников при включении и выключении устройства.
  3. Увеличил напряжение питания до 30 В (после фильтра), что делает усилитель более мощным и практически нечувствительным к нагрузке различных типов наушников (хорошо работает даже при нагрузке на 16-омные).
  4. Увеличил ток покоя до 1 А, но высокая мощность потерь (65 Вт) потребовала использования радиатора.
  5. Резисторы R10 15 Ом / 0,5 Вт заменены на сборку 5 х 75 Ом / 2 Вт из-за большого количества выделяемого ими тепла.
  6. Все работает от тороидального трансформатора 2 х 24 В, двухполюсного выпрямителя на высокоскоростных диодах SFAF50G, фильтрация 10000 мкФ / 50 В.

В итоге ни шумов, ни гудений — чистая тишина. Тем более там нет потенциометра — вход УНЧ напрямую подключен к выходу USB звуковой карты.

Схема фильтра питания

Вот схема фильтра. Диод — любой кремний, вместо полевика IRFP240 можете использовать IRFP450 или аналогичный, также подойдут те, которые использовались в усилителе. Это классический транзисторный фильтр, схема которого является частью усилителя ZEN V9 Nelson Pass.

В принципе достаточно 1 х 4700 мкФ до и 2 х 2200 мкФ после фильтров, в идеале вместо 1 х 2200 мкФ дать 2 х 1000 мкФ с низким ЭПС. Усилители класса А потребляют почти постоянный ток, в музыке нет колебаний мощности, как в случае с другими классами усилителей, следовательно, гораздо меньше потребность в больших конденсаторах в источнике питания. Представленная схема является правильной и спаянная без ошибок должна сразу заработать.

Усилитель

Предлагаемый усилитель я разработал больше из спортивного интереса. Интерес состоял в том, чтобы используя лишь распространенные транзисторы сделать однотактный усилитель с минимальной (максимально короткой) ООС, который по объективным параметрам бы не уступал усилителям в которых линейность обеспечивается сверхглубокой ООС по всему тракту с применением ОУ. Усилитель потребляет 130мА/канал и работает от нестабилизированного источника питания напряжением 12В или выше. Ток потребления практически не зависит от напряжения питания и усиливаемого сигнала. Измеренные гармонические искажения на частоте 1КГц составляют менее 0.001% при амплитуде сигнала 3В на нагрузке 34 и 68 Ома. Так же при повышении уровня питающего напряжения до 24В усилитель способен отдать амплитуду 7.5В (больше – у меня нету источника) на нагрузку 136Ом при сопоставимом THD. Отчет RMAA, который был снят со звуковой картой EMU0404USB и который можно просмотреть с помощью RMAA — в файлах статьи. На словах скажу, что если не доводить схему до крайности клиппинга — на графиках THD фигурируют первые две гармоники. Вот для примера график THD+шумы при амплитуде 3V на нагрузке 34 Ома:

(Пики в области высоких частот и ультразвука — это помехи от работающих неподалеку импульсных БП). А вот общие цифры для измерений различных нагрузок/уровней:

Повышенный уровень THD при 4В на 34Ома объясняется выходом схемы из режима минимальных девиаций тока коллектора в таких условиях. Попросту — не хватает тока покоя выходного каскада, т.к. 4V/34 Ома > 100mA. Замечу еще, что собственный уровень THD звуковой карты в режиме лупбэка, который следует “отнимать в уме”, составляет 0.0008%.

Аналогичные цифры выдавало и моделирование в Microcap 9. Усилитель обладает так же отличными АЧХ и ФЧХ. У меня нет инструментов, способных их корректно измерить в железе, но моделирование показывает плоскую АЧХ до мегагерца а ФЧХ — до двух сотен килогерц:

Субъективно звук усилителя тоже порадовал, кажется он даже лучше чем звук другого устройства, в тракте которого применены не дешевые ОУ OPA2211. Хотя я привык не очень доверять субъективным ощущениям. Сегодня они одни, а завтра могут оказаться совершенно другими.

Собственно схема усилителя вот (учтите, что 1m = 1000u, то есть конденсатор, обозначенный 3.3m – это 3300мкФ):

Функционально усилитель состоит из двух каскадов, первый – усилитель напряжения, усиливающий амплитуду в 3 раза (что я считаю в самый раз для ушника), а второй – повторитель напряжения, усиливающий ток. Каждый из каскадов имеет свою локальную короткую петлю обратной связи, обеспечивающей минимальную девиацию коллекторных токов транзисторов сигнального тракта, что и обеспечивает максимальную линейность, а так же дает дополнительные бонусы. Так, к примеру усилитель практически не чувствителен к частотным характеристикам источника питания, потому порода электролитических конденсаторов по питанию не имеет особого значения. Единственные конденсаторы, которые желательно использовать покачественней – разделительные входной и выходной. Еще – усилитель обладает крайне низким выходным сопротивлением и в то же время ток короткого замыкания выходного каскада ограничен безопасным для его элементов значением.

Читайте также:  Уклон мягкой кровли в процентах и градусах

Еще несколько неочевидных моментов по работе и наладке схемы:

  • Диоды D1, D2, D3 обеспечивают оптимальное смещение при значительных изменениях (12..24В) напряжения питания.
  • Резистор R2 в жизни — переменник-триммер, с помощью которого после сборки задается оптимальное смещение на выходе усилителя напряжения (узел ‘preout’), которое должно составлять примерно половину напряжения питания + 0.7В. То есть 6.7В при питании 12В.
  • C10 – желательно пленка, я использовал WIMA.
  • L1/R18 на выходе – обязательны и нужны для устойчивости усилителя при работе с длинным ушным проводом. Я намотал L1 проводом толщиной 1.2мм – 12 витков на каркасе диаметром 12мм (в качестве каркаса использовал маркер Eddin 404) Можно использовать другой провод, но мотать так чтобы индуктивность была не менее указанной. К примеру, проводом диаметром 1мм на таком же каркасе нужно намотать 10..11 витков.
  • R17 задает ток выходного каскада порядка 110мА. Уменьшая его – можно увеличивать ток, чтобы повысить нагрузочную способность усилителя при работе на низкоомные наушники. Но греться транзисторы от этого будут сильнее. Так же значительно повышая ток покоя стоит прогнать модель – возможно при этом потребуется и подгон номиналов других элементов.
  • Резисторы R14,R17 должны быть рассчитаны на мощность не менее половины и двух ватт соответственно, чтобы выжить в режиме продолжительного КЗ выхода. Я использовал несколько SMD резисторов типоразмера 2512, но затем предусмотрел на печатке место для R17 и для их длинноногих собратьев.
  • Транзисторы требуют установки радиаторов. Я использовал радиаторы под скромным названием ‘718’, выглядящие вот так:

    Практика же показала, что при питании повышенным до 24В напряжением желательно использовать что-нибудь более массивное или же предусмотреть по больше вентиляционных отверстий в корпусе над- и под транзисторами, просверлив в плате отверстия под радиаторами (это можно, если осторожно). Радиаторы нижними краями упер вплотную в плату, для пущей устойчивости скрепив их капелькой нейтрального силикона сверху:

Питание

Усилитель может питаться от не стабилизированного источника напряжением от 12В постоянки или от 9В переменки и до победы. Шутка. Я тестировал питая девайс от 9В и 18В переменки (соответственно — 12В..24В постоянки), верхний предел определяется выносливостью примененных элементов и охлаждением выходных транзисторов. К слову, моя конструкция пожалуй чересчур плотновата для питания 18В, и если планируется такое питание – надо подумать о лучшем охлаждении. Непосредственно на плате усилителя я смонтировал двойной мостик на диодах Шоттки, вход первого мостика – подключен напрямую к входным клеммам питания, второй – через два фазосдвигающих неполярных конденсатора по 1000мкФ каждый. Этот прием слегка сглаживает зубья пилы на выходе сглаживающего фильтра выпрямителя, укорачивая в итоге спектр сетевых пульсаций. Обычно с такой целью применяют CRC фильтр, но у него есть свой недостаток — на резисторе слегка проседает напряжение питания — то есть теряются драгоценные ватты, выделяясь в виде тепла в корпусе усилителя, а не в виде децибел звукового давления в ушах. Между мостиками и непосредственно схемой усилителя я установил три дросселя индуктивностью 470мкГн каждый – с целью минимизации уровня сетевых помех, если таковые будут. В результате усилитель получился достаточно всеядным – его можно питать как от источника переменки напряжением 9..18В так и от источника постоянного напряжения 12..24В, причем этим источником может выступать как 12вольтовая “зарядка”, так и бортовая сеть авто – дроссели позволяют эффективно фильтровать ВЧ помехи от таких источников.

Разумеется усилитель прекрасно сможет работать и через одинарный мостик безо всяких дросселей в питании, но уровень фона и помех, приходящих по сети (включая "земляную петлю") будет несколько выше.

В качестве “комплектного” БП я сделал на скорую руку трансформаторный БП в формате “здоровая-такая-зарядка”, всунув в корпус Z64J трансформатор TL48D-090-0555. Последний имеет две обмотки по 9В, потому я приделал сбоку переключатель и подписал его снаружи “9VAC/18VAC”. Выглядит это все так:

Защита

Поскольку в усилителе я применил выходной конденсатор с довольно большой емкостью (3300мкФ) то было бы довольно безрассудно позволять ему при включении/выключении заряжаться/разряжаться через наушники. С другой стороны применение конденсатора с меньшей емкостью может заметно подпортить ФЧХ в области низких частот, потому я решил применить схему релейной защиты наушников при включении/выключении усилителя. Обычно подобные защиты в однотактных усилителях с конденсаторным выходом делают так: контакты реле коммутируют непосредственно нагрузку, а обмоткой реле управляет схема задержки, которая подает ток на обмотку с некоторой задержкой, в течении которой конденсатор усилителя успевает зарядиться через специальный резистор. При пропадании питании эта схема просто обесточивает реле и то мгновенно отключает нагрузку. У такого варианта есть парочка недостатков, которые я решил побороть несколько нетрадиционным образом. Первый недостаток состоит в том, что обмотка реле потребляет некоторую мощность, которая приводит к небольшому дополнительному повышению теплоотдачи всей схемы. К примеру — парочка герконовых реле на 12В будут иметь общее сопротивление порядка 500Ом и потреблять примерно 0.3Вт, что с одной стороны немного, но с другой – это +10% к тепловыделению всего усилителя. Вторая проблема – контакты китайских реле, коммутируя нагрузку – могут (не)заметно подпортить звук. Как я уже писал, я решил пойти нестандартным путем и чтобы побороть эти недостатки – решил сделать схему, которая, во-первых, подает ток на обмотку кратковременно после включения и (внезапно) после выключения усилителя. Поскольку это усилитель, а не вечный двигатель, то питание обмотки после выключения я решил поддерживать мелким ионистором. Так же, чтобы исключить влияние контактов реле на качество звучания я решил вместо отключения нагрузки при помощи реле включать кратковременно параллельно нагрузке резистор сопротивлением 11 Ом, таким образом, большая часть энергии заряда/разряда конденсатора будет проходить через этот резистор, сберегая обмотку наушников от перегрева.

Читайте также:  Большой зал в доме интерьер

Схема управления защитным реле выглядит так:

Она питается от своего личного мостика, что позволяет ей быстро “среагировать” на пропадание питания. Схема состоит из двух частей: на элементах R1,D3,C5,Q1,Q2 собран простейший стабилизатор на 5В, далее от этого стабилизатора запитана остальная часть схемы, включая ионистор емкостью 0.47 Ф (C4), рассчитанный на рабочее напряжение 5.5В. Ионистор имеет довольно высокое внутреннее сопротивление, потому для эффективного подавления пульсаций питания параллельно ему добавлен обычный электролитический конденсатор (C2). Реле я использовал герконовые, с обмоткой на 5В и сопротивлением 500 Ом (2 в параллели –> 250 Ом). Внутри самих реле параллельно обмотке имеется диод гашения ЭДС самоиндукции, потому обращаем внимание на положение первого вывода (оно обозначено на моей печатке цифрой 1). Схема задержки выполнена на полевых транзисторах Q3,Q4, время задержки при включении задается цепью C1R4 и пороговым значением напряжения отпирания транзисторов, которое должно быть поменьше. Помимо моделированных IRF7404 в жизни прекрасно работают и IRF7410. Полезное замечание для сборки: вначале стоит смонтировать именно часть-стабилизатор и конденсатор C2, после чего, подав на нее питание – убедиться что конденсатор C2 заряжается до адекватного напряжения 5В+-0.3, и лишь после этого – запаивать в плату остальные, более дорогостоящие детали.

Если вы надумаете собирать усилитель без такой (или какой либо другой) схемы защиты наушников от переходных процессов — следует поубавить емкость выходного конденсатора – чтобы наушникам не поплохело.

Печатки

В одном из прилагаемых архивов – печатные платы, нарисованные в Sprint Layout 6. Я старался по максимуму использовать возможности SMD монтажа, и большинство резисторов – именно такие мелкие, которые паять комфортно лишь при помощи мелкого паяльника/станции. Печатки были слегка поправлены после распайки первой модели, но все должно быть хорошо 🙂 Печаток две: одна – усилитель с питающим его двойным мостовым выпрямителем, вторая – схема релейной защиты + выход, вход и регулятор громкости. Для ЛУТа печатки следует отзеркалить (впрочем, печатка усилителя паяется с любого зеркального варианта). А для БП печатки нету — я ее сразу рисовал маркером на плате. В исходниках печаток указаны так же наименования моделей многих элементов, которые я применил и под которые рисовал печатки. Многие дырки в печатках (особенно – в релюшечной) – имеют неверный диаметр, то есть рассверливал до нужного диаметра я их уже по факту. Так же положение круглого бока транзисторов в корпусе TO-92 местами не соответствует реальности, тут следует ориентироваться на соответствие назначения выводов, а не на рисунок корпуса транзистора. Две печатки соединяются проводами и в моей конструкции были смонтированы одна над другой в компактном корпусе:

Провода, подключающие вход усилителя – тонкий антенный коаксиал — для минимизации наводок и паразитных обратных связей, которые возможны в такой тесносте. Собранный девайс выглядит так:

К слову, самые внимательные возможно заметили “лишний” разъем в торце. Это 4х пиновый minixlr, который подключен параллельно обычному TRS и которым я пользуюсь со своими наушниками чтобы минимизировать влияние переходного сопротивления разъема и общего провода наушников на разделение каналов. Эргономичность размещения RCA разъемов на морде конечно сомнительна, но оно сделано так для минимизации наводок цепи питания на сигнальные провода.

В аттачах помимо архивов и результатов RMAA имеются так же файл модели усилителя для Microcap 9.

Ссылка на основную публикацию
Adblock detector