Установка устройств компенсации реактивной мощности

Установка устройств компенсации реактивной мощности

Нагрузка предприятий подразделяется на активную, индуктивную и емкостную, все эти виды мощностей зависят от типа работающего оборудования.

Существование реактивной энергии несет отрицательное воздействие на электрические сети, создает электромагнитные поля в электрических устройствах.

Существование реактивного тока создает дополнительную нагрузку, приводящую к снижению качества электроэнергии, влекущую увеличение сечений токовых проводников.

Назначение устройства компенсации реактивной мощности

Рис. Внешний вид УКРМ 6(10) кВ

Основным предназначением устройства является снижение действия реактивной мощности, служит для увеличения и поддержания на определенном нормативном уровне величины коэффициента мощности в трехфазных распределительных сетях. Главное предназначение УКРМ, является аккумуляция в конденсаторах реактивной мощности. Это действие помогает разгрузить электрическую сеть от перетоков реактивной мощности, происходит стабилизация напряжения, увеличивается доля активной мощности.

Основные функции УКРМ

  1. Понижение потребляемого нагрузочного тока на 30-50%.
  2. Снижение составляющих элементов распределительной сети, увеличение их срока службы.
  3. Повышение надежности и пропускной способности электрической сети.
  4. Понижение тепловых потерь электрического тока.
  5. Снижение воздействия высших гармоник.
  6. Понижение несимметричности фаз, сглаживание сетевых помех.
  7. Снижение до минимума стоимости индуктивной мощности.

Установка компенсации реактивной мощности УКРМ отличается рядом преимуществ, обусловленных применением конденсаторов, дополненных третьим уровнем безопасности в виде полипропиленовой сегментируемой пленки пропитанной специальной жидкостью, обеспечивающих надежное использование, долговечность, невысокую стоимость при выполнении работ по техническому обслуживанию и ремонту.

Наличие в конденсаторной установке УКРМ специализированных тиристорных быстродействующих пускателей, работающих с опережением по времени для коммутации фазовых конденсаторов, срабатывающих при изменении cosφ, продляет время их безотказной работы.

Рис. Внешний вид тиристора для коммутации конденсаторных установок.

Для обеспечения регулирования cosj в автоматическом режиме с передачей информации на PC с контролем в сети высших гармоник тока и напряжения, применяются контроллеры с контакторным переключением.

Для повышения качества работы УКРМ в установке присутствует фильтр нечетных гармоник и устройства терморегуляции, для обнаружения неисправностей продумана система индикации.

Все оборудование помещается в блок-контейнер, снабженный вентиляцией и обогревом с автоматическим управлением. Устройства обеспечивают комфортное и удобное обслуживание при низких температурах до -60 о С.

Модульный тип построения, способствует поэтапному наращиванию мощности УКРМ.

Защита конденсаторных установок

Для безопасной работы устройства предусмотрены защиты:

  1. Блокировки, обеспечивающие защиту от прикосновения к токоведущим частям, находящимся под напряжением.
  2. Защита, предохраняющая установку от короткого замыкания конденсатора.
  3. От превышения нормы электрического тока.
  4. От перенапряжения.
  5. От перекоса токов по фазам устройства.
  6. Электромагнитное блокирование, предохраняющее от ошибочного включения коммутационных аппаратов УКРМ.
  7. Механическое блокирование включения заземляющих ножей в работающей установке.
  8. Наличие контактного выключателя, отключающего установку при открывании дверей при включенном оборудовании.
  9. Тепловая защита, включающая принудительное охлаждение при повышении температуры конденсаторных батарей.
  10. Термодатчик включающий обогрев в установке при понижении температуры.

Достоинства устройства конденсаторной установки УКРМ

  1. Наличие трехфазных пожарозащищенных экологических конденсаторов.
  2. Применение в устройстве специальных предохранителей и разрядников сопротивления с обкладками из полимерной металлизированной пленки с минеральной пропиткой.
  3. Регуляторы реактивной мощности и цифровые анализаторы с дистанционным управлением.
  4. Для повышения сейсмоустойчивости и вибрационной стойкости применяются специальные полимерные изоляторы.

Типы УКРМ

Существуют несколько типов установок УКРМ, применяемых в сетях 6-10 кВ, это:

  1. Нерегулируемые установки, выполненные в модульном построении, состоящем из нескольких фиксированных ступеней,коммутация происходит в ручном режиме при отсутствии токов нагрузки.
  2. Автоматические или регулируемые, базовое устройство предназначено для автоматического регулирования ступеней, каждая из которых состоит из трех конденсаторов, соединенных в звезду, операции по осуществлению коммутационных действий производят автоматически с использованием электронного блока, определяющего мощность и время включения.
  3. Полуавтоматические установки применяются для снижения стоимости устройства компенсации реактивной мощности, цена становится доступной с одновременным сохранением качества работы устройства. Для этого в устройстве применяются, как регулированные ступени, так и фиксированные.
  4. Высоковольтные установки с фильтрами, применяемыми для защиты от нелинейных гармонических искажений защитных антирезонансных дросселей. Применяются такие установки совместно с устройствами, генерирующими явление в сети высших гармоник, это: устройства, обеспечивающие плавный пуск и частотные преобразователи.

Таблица №1 Типы конденсаторных установок с указанием мощности ступеней.

В модульных установках КРМ ступени конструктивно объединены в модуль

Особенности подключения УКРМ

Самым оптимальным подключением устройства компенсации реактивной мощности, является установка устройства в непосредственной близости к потребителю (индивидуальная компенсация). В этом случае, стоимость установки компенсации реактивной мощности, состоящая из суммы стоимости внедрения и дальнейшего обслуживания составляет значительную величину.

При объединении нагрузок в единый комплекс по потреблению реактивной мощности, целесообразно применять групповую компенсацию. В этом случае применение цена устройства реактивной мощности становится наиболее приемлемой при внедрении в работу, но менее выгодной для пользователей из-за понижения активных потерь, в электрической сети оказывающих влияние на экономию средств.

Читайте также:  Сорт огурцов герман фото

Возможно, подключение устройства КРМ в виде отдельного оборудования с индивидуальным кабельным вводом, так и в составе НКУ, к примеру, в составе главного распределительного щита.

Расчет УКРМ

Для выбора УКРМ производится подсчет полной суммарной мощности конденсаторных батарей электроустановки, по формуле:

Где Р – активная мощность электроустановки
Показания (tg(ф1) -tg(ф2)) находятся по данным cos(ф1) и cos(ф2)
Значение cos(ф1) коэффициента мощности до установки УКРМ
Значение cos(ф2) коэффициента мощности после установки УКРМ, задается электроснабжающим предприятием.

Формула мощности приобретает такой вид:

k- табличный коэффициент, соответствующий значениям коэффициента мощности cos(ф2)

Мощность УКРМ определяется конкретно для всех участков электрической сети в зависимости от характера нагрузки и способа компенсации.

Только после проведенного в полной мере анализа показателей, полученных при диагностике данных, появляется возможность выбора регулируемых или нерегулируемых УКРМ.

Обозначается степень дробления мощности по ступеням, время и скорость повторного срабатывания ступеней, выявляется необходимость использования в конденсаторной установке компенсации реактивной мощности для снижения коэффициента несинусоидальности в питающей сети, фильтрации нечетных гармоник, а также отсутствие эффекта резонанса. Это обеспечивает качество электроэнергии.

Таблица№2 Расчет мощности конденсаторов для УКРМ

Необходимо знать, что нельзя производить полную компенсацию реактивной мощности до единицы, это приводит к перекомпенсации, которая может произойти в результате непостоянного значения активной мощности потребителя, а также в результате случайных факторов. Желательное значение cosф2 от 0,90 до 0,95.

Потери в электрических сетях

К электрическим сетям подключается как активная, так и реактивная нагрузка, которую создают потребители с резкопеременной нагрузкой: например, асинхронные двигатели, сварочные трансформаторы, компрессоры, станки, насосы, электропечи, электролизные печи, люминесцентные лампы.

Переменный ток в устройстве с индуктивными свойствами отстаёт по фазе от напряжения. Это означает, что в любом периоде переменного напряжения есть участки, когда мгновенные значения напряжения и тока имеют разный знак. В эти моменты индуктивная нагрузка возвращает в питающую сеть энергию, запасённую в индуктивности. При этом часть подводимой к устройству энергии не используется в нём. Эту часть принято называть реактивной энергией. Таким образом в сети образуются потери мощности. И, кроме того, реактивная энергия расходуется на нагрев проводов, создавая также и тепловые потери.

Для больших предприятий такие потери могут быть очень чувствительными. Кроме того, генераторы и линии электропередач в этом случае должны быть рассчитаны не только на полезную нагрузку, но, сверх того, и на генерацию и передачу этой бесполезной реактивной энергии.

Снижение потерь в электросетях

Для снижения потерь в электросетях необходимо проводить специальные мероприятия, обеспечивающие сокращение перетока реактивной мощности. В настоящее время наиболее эффективным решением является применение установок компенсации реактивной мощности (КРМ), которые позволяют не только компенсировать реактивный ток и реактивную мощность в сети, но и повысить качество электроэнергии, отдаваемой потребителям.

Чем ниже коэффициент мощности cosφ при одной и той же активной нагрузке электроприемников, тем больше потери мощности и падение напряжения в элементах систем электроснабжения. Так, в сетях с перечисленными в начале данной статьи видами реактивной нагрузки коэффициент мощности может находиться в диапазоне от 0,5 до 0,8.

Соответственно, в первую очередь, необходимо создать условия функционирования электрических сетей, обеспечивающие получение наибольшего значения коэффициента мощности. Для решения этих задач в электрическихсетях предприятий и внедряются устройства и системы компенсации реактивной мощности.В зависимости от особенностей конструкции и исторических причин эти устройства в разных источниках и у разных производителей могут называться по-разному:

  • УКРМ – установка компенсации реактивной мощности;
  • УКМ – установка компенсации мощности;
  • ККУ – комплектная конденсаторная установка;
  • УК – установка компенсации.

Наибольший эффект дают комплексные автоматизированные установки компенсации реактивной мощности (АУКРМ). При комплексном подходе конденсаторная установка разделяется на отдельные секции и снабжается специальным контроллером, который следит за величиной реактивной мощности в сети и подключает секции по мере необходимости. Современные контроллеры, кроме того, могут выполнять много дополнительных функций, например, они следят за состоянием конденсаторов, измеряют параметры электроэнергии в сети и выводят результаты измерений на специальный дисплей или передают их в компьютер.

Способы использования установок для компенсации реактивной мощности

  • Индивидуальная компенсация реактивной мощности

При индивидуальной компенсации монтаж конденсаторной установки производится рядом с индуктивной нагрузкой. При этом подключение и отключение УКРМ происходит вместе с нагрузкой и, как правило, является нерегулируемой.

Преимущество этого способа состоит в том, что обеспечивается максимальная близость конденсаторной установки к нагрузке и, следовательно, компенсируются потери во всех участках энергосети, от места производства электроэнергии и до точки потребления.

Читайте также:  Производители шифера в россии

Недостаток такого способа состоит в том, что он эффективен только для нагрузок с постоянной индуктивной составляющей. Если индуктивность нагрузки меняется во время работы, то возможна избыточная или недостаточная компенсация. Кроме того, при выключенной нагрузке УКРМ не используется и простаивает.

  • Групповая компенсация реактивной мощности

При групповой компенсации одна УКРМ, как правило, нерегулируемая, используется для нескольких устройств. Такой способ компенсации обеспечивает более эффективное использование конденсаторной установки.

Недостатки групповой компенсации:не компенсируется реактивная мощность в цепях подключения отдельных устройств, менее полная компенсация реактивной мощности.

  • Централизованная компенсация реактивной мощности

Централизованная компенсация применяется там, где реактивная мощность нагрузки во время работы изменяется в широких пределах и требуется автоматическая настройка номинальных значений подключенных к сети конденсаторов КРМ.

При централизованной компенсации достигаются наилучшая точность компенсации и наиболее эффективное использование конденсаторов.

Централизованная компенсация может применяться как на стороне высшего напряжения, так и на стороне низшего напряжения.

В первом случае автоматические высоковольтныеконденсаторные установки КРМ подключаются к линиям с напряжением 6 – 10 кВ, и достигается эффективное использование конденсаторов, требуется меньшее их количество и стоимость компенсации 1кВАр получается наименьшей. Но при использовании установок КРМ на стороне высокого напряжения компенсируется только реактивная мощность в высоковольтных линиях, а в трансформаторах подстанции компенсации нет.

Во втором случае применяются низковольтные установки компенсации реактивной мощности (на стороне напряжения 0,4 кВ), которые и обеспечивают компенсацию реактивной мощности в трансформаторах подстанции.

Следует отметить, что при индивидуальной и групповой компенсации возможно также применение и регулируемых (автоматических) установок КРМ (АУКРМ). Эти установки несколько дороже, но их применение может быть более эффективно, поскольку в данном случае при помощи контроллера можно автоматически подбирать требуемый номинал конденсатора КРМ. Также возможно и комбинированное решение: например, одна из ступеней установки всегда включена, а остальные ступени подключаются по мере необходимости при помощи контроллера.

Эффект, достигаемый при компенсации реактивной мощности

Применение установок компенсации реактивной мощности, в первую очередь, приводит к снижению электрических и тепловых потерь в сети и снижению нагрузки на трансформаторы.

За счет становится возможным увеличить количество потребителей, подключенных к сети, используя уже имеющееся оборудование, не устанавливая дополнительных трансформаторов, не подводя дополнительные линии. При этом количество подключённых потребителей может быть увеличено до 30%.

Как уже говорилось выше, при компенсации сокращаются тепловые потери, что позволяет устранить перегрев кабельных линий, автоматов, контакторов, и, в конечном счете, трансформатора. В результате оборудование реже выходит из строя и снижаются затраты на текущий ремонт.

Основной эффект от применения устройств компенсации реактивной мощности выражается в следующих моментах:

  • Экономический эффект при внедрении УКРМ – от 5 до 30%, за счет снижения потерь в кабельных линиях и оплаты за реактивную энергию;
  • Разгрузка кабельных линий;
  • Увеличение срока службы коммутационного оборудования;
  • Снижение аварийности;
  • Возможность подключения на ту же выделенную мощность дополнительного оборудования.

Конденсаторы для силовой электроники

Конденсаторы для повышения коэффициента мощности

Установки компенсации реактивной мощности 0.4кВ

Моторные и светотехнические конденсаторы

Реактивная мощность — часть полной мощности, затрачиваемая на электромагнитные процессы в нагрузке имеющей емкостную и индуктивную составляющие. Не выполняет полезной работы, вызывает дополнительный нагрев проводников и требует применения источника энергии повышенной мощности.

Статьи по теме компенсации реактивной мощности

Реактивная мощность относится к техническим потерям в электросетях согласно Приказу Минпромэнерго РФ № 267 от 04.10.2005.

При нормальных рабочих условиях все потребители электрической энергии, чей режим сопровождается постоянным возникновением электромагнитных полей (электродвигатели, оборудование сварки, люминесцентные лампы и многое др.) нагружают сеть как активной, так и реактивной составляющими полной потребляемой мощности. Эта реактивная составляющая мощности (далее реактивная мощность) необходима для работы оборудования содержащего значительные индуктивности и в то же время может быть рассмотрена как нежелательная дополнительная нагрузка на сеть.

Для наглядности и лучшего понимания происходящих процессов, рекомендуем ознакомиться с роликом о реактивной мощности:

При значительном потреблении реактивной мощности напряжение в сети понижается. В дефицитных по активной мощности энергосистемах уровень напряжения, как правило, ниже номинального. Недостаточная для выполнения баланса активная мощность передается в такие системы из соседних энергосистем, в которых имеется избыток генерируемой мощности. Обычно энергосистемы дефицитные по активной мощности, дефицитны и по реактивной мощности. Однако недостающую реактивную мощность эффективнее не передавать из соседних энергосистем, а генерировать в компенсирующих устройствах, установленных в данной энергосистеме. В отличие от активной мощности реактивная мощность может генерироваться не только генераторами, но и компенсирующими устройствами – конденсаторами, синхронными компенсаторами или статическими источниками реактивной мощности, которые можно установить на подстанциях электрической сети.

Читайте также:  Подготовка раствора для кладки кирпича

Компенсация реактивной мощности, в настоящее время, является немаловажным фактором позволяющим решить вопрос энергосбережения и снижения нагрузок на электросеть. По оценкам отечественных и ведущих зарубежных специалистов, доля энергоресурсов, и в частности электроэнергии занимает значительную величину в себестоимости продукции. Это достаточно веский аргумент, чтобы со всей серьезностью подойти к анализу и аудиту энергопотребления предприятия, выработке методики и поиску средств для компенсации реактивной мощности.

Средства компенсации реактивной мощности

Индуктивной реактивной нагрузке, создаваемой электрическими потребителями, можно противодействовать с помощью ёмкостной нагрузки, подключая точно рассчитанный конденсатор. Это позволяет снизить реактивную мощность, потребляемую от сети и называется корректировкой коэффициента мощности или компенсацией реактивной мощности.

Преимущества использования конденсаторных установок, как средства для компенсации реактивной мощности

  • малые удельные потери активной мощности (собственные потери современных низковольтных косинусных конденсаторов не превышают 0,5 Вт на 1000 ВАр);
  • отсутствие вращающихся частей;
  • простой монтаж и эксплуатация (не нужно фундамента);
  • относительно невысокие капиталовложения;
  • возможность подбора любой необходимой мощности компенсации;
  • возможность установки и подключения в любой точке электросети;
  • отсутствие шума во время работы;
  • небольшие эксплуатационные затраты.

В зависимости от подключения конденсаторной установки возможны следующие виды компенсации:

  1. Индивидуальная или постоянная компенсация, при которой индуктивная реактивная мощность компенсируется непосредственно в месте её возникновения, что ведет к разгрузке подводящих проводов (для отдельных, работающих в продолжительном режиме потребителей с постоянной или относительно большой мощностью — асинхронные двигатели, трансформаторы, сварочные аппараты, разрядные лампы и т.д.).
  2. Групповая компенсация, в которой аналогично индивидуальной компенсации для нескольких одновременно работающих индуктивных потребителей подключается общий постоянный конденсатор (для находящихся вблизи друг от друга электродвигателей, групп разрядных ламп). Здесь также разгружается подводящая линия, но только до распределения на отдельных потребителей.
  3. Централизованная компенсация, при которой определенное число конденсаторов подключается к главному или групповому распределительному шкафу. Такую компенсацию применяют, обычно, в больших электрических системах с переменной нагрузкой. Управление такой конденсаторной установкой выполняет электронный регулятор — контроллер, который постоянно анализирует потребление реактивной мощности от сети. Такие регуляторы включают или отключают конденсаторы, с помощью которых компенсируется мгновенная реактивная мощность общей нагрузки и, таким образом, уменьшается суммарная мощность, потребляемая от сети.

Установка компенсации реактивной мощности состоит из определенного числа конденсаторных ветвей, которые в своём построении и ступенях подбираются исходя из особенностей каждой конкретной электросети и её потребителей реактивной мощности.

Больше других распространены ветви в 5 кВАр, 7,5 кВАр, 10 кВАр 12,5 кВАр, 20 кВАр, 25 кВАр, 30 кВАр, 50 кВАр. Более крупные ступени включения, например, в 100 кВАр или ещё больше, достигаются соединением нескольких малых ветвей. Таким образом, снижается нагрузка на сеть, создаваемая токами включения и следовательно, уменьшаются образующиеся от этого помехи (например, импульсы тока). Если в напряжении электросети содержится большая доля высших гармоник, то конденсаторы, обычно, защищают дросселями (реакторами фильтрующего контура).

Применение автоматических установок компенсации реактивной мощности позволяет решить ряд проблем:

  1. снизить загрузку силовых трансформаторов (при снижении потребления реактивной мощности снижается потребление полной мощности);
  2. обеспечить питание нагрузки по кабелю с меньшим сечением (не допуская перегрева изоляции);
  3. за счет частичной токовой разгрузки силовых трансформаторов и питающих кабелей подключить дополнительную нагрузку;
  4. позволяет избежать глубокой просадки напряжения на линиях электроснабжения удаленных потребителей (водозаборные скважины, карьерные экскаваторы с электроприводом, стройплощадки и т. д.);
  5. максимально использовать мощность автономных дизель — генераторов (судовые электроустановки, электроснабжение геологических партий, стройплощадок, установок разведочного бурения и т. д.);
  6. облегчить пуск и работу двигателя (при индивидуальной компенсации);
  7. автоматически отслеживается изменение реактивной мощности нагрузки в компенсируемой сети и, в соответствии с заданным, корректируется значение коэффициента мощности — cosφ;
  8. исключается генерация реактивной мощности в сеть;
  9. исключается появление в сети перенапряжения, т. к. нет перекомпенсации, возможной при использовании нерегулируемых конденсаторных установок;
  10. визуально отслеживаются все основные параметры компенсируемой сети;

Установки компенсации изготавливаются из отдельных, расположенных в металлических шкафах, силовых компенсационных модулей, конструкция которых обеспечивает взаимозаменяемость идентичных элементов установки. Сборка и комплектация установок компенсации реактивной мощности производится на предприятии-изготовителе, а на месте их размещения — только монтаж и подключение к компенсируемой сети электроснабжения.

Установки компенсации реактивной мощности до100 кВАр, обычно, выпускаются в настенном исполнении.

Размещать установки компенсации лучше всего вблизи распределительного щита, т.к. в этом случае упрощается их присоединение к электросети. При соблюдении требований ПУЭ комплектные установки компенсации реактивной мощности можно устанавливать непосредственно в производственных помещениях.

Ссылка на основную публикацию
Adblock detector